Short-term prediction of opioid prescribing patterns for orthopaedic surgical procedures: a machine learning framework

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
E. Mortaz, Ali Dağ, L. Hutzler, C. Gharibo, Lisa Anzisi, J. Bosco
{"title":"Short-term prediction of opioid prescribing patterns for orthopaedic surgical procedures: a machine learning framework","authors":"E. Mortaz, Ali Dağ, L. Hutzler, C. Gharibo, Lisa Anzisi, J. Bosco","doi":"10.1080/2573234X.2021.1873078","DOIUrl":null,"url":null,"abstract":"ABSTRACT Overprescribing of opioids after surgical procedures can increase the risk of addiction in patients, and under prescribing can lead to poor quality of care. In this study, we propose a machine learning-based predictive framework to identify the varying effects of factors that are related to the opioid prescription amount after orthopaedic surgery. To predict the prescription classes, we train multiple classifiers combined with random and SMOTE over-sampling and weight-balancing techniques to cope with the imbalance state of the dataset. Our results show that the gradient boosting machines (XGB) with SMOTE achieve the highest classification accuracy. Our proposed analytical framework can be employed to assist and therefore, enable the surgeons to determine the timely changing effects of these variables.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2021.1873078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Overprescribing of opioids after surgical procedures can increase the risk of addiction in patients, and under prescribing can lead to poor quality of care. In this study, we propose a machine learning-based predictive framework to identify the varying effects of factors that are related to the opioid prescription amount after orthopaedic surgery. To predict the prescription classes, we train multiple classifiers combined with random and SMOTE over-sampling and weight-balancing techniques to cope with the imbalance state of the dataset. Our results show that the gradient boosting machines (XGB) with SMOTE achieve the highest classification accuracy. Our proposed analytical framework can be employed to assist and therefore, enable the surgeons to determine the timely changing effects of these variables.
骨科手术过程中阿片类药物处方模式的短期预测:机器学习框架
手术后过量开具阿片类药物会增加患者成瘾的风险,而处方不足会导致护理质量差。在这项研究中,我们提出了一个基于机器学习的预测框架,以识别与骨科手术后阿片类药物处方量相关的因素的不同影响。为了预测处方类,我们结合随机和SMOTE过采样和权重平衡技术训练了多个分类器,以应对数据集的不平衡状态。结果表明,使用SMOTE的梯度增强机(XGB)达到了最高的分类精度。我们提出的分析框架可以帮助外科医生及时确定这些变量变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信