Bar Adsorbent Microextraction with Carbon-Based Sorbent Layers for the Identification of Pharmaceutic Substances

S. Thenmozhi, V. Gowri, K. Vinayaka, R. P. Singh, V. Vel, Kareem Yusuf, A. M. Aljuwayid, M. Islam, Abdi Diriba
{"title":"Bar Adsorbent Microextraction with Carbon-Based Sorbent Layers for the Identification of Pharmaceutic Substances","authors":"S. Thenmozhi, V. Gowri, K. Vinayaka, R. P. Singh, V. Vel, Kareem Yusuf, A. M. Aljuwayid, M. Islam, Abdi Diriba","doi":"10.1155/2023/6153630","DOIUrl":null,"url":null,"abstract":"Thirteen carbon materials were tested as sorbent layers in bar adsorbent microextraction (BAμE) to monitor hint amounts of 10 common pharmaceutical compounds (PhCs) in surface and groundwater matrices such as surface and groundwater, saltwater, spring water, and sewage. The persistence of trace amounts of three organophosphate insect repellent and cis and trans permethrin (PERM) in water quality matrices is suggested using bar adsorptive microextraction in conjunction with microliquid dissolution accompanied by significant volume injection-gas chromatography-mass spectroscopic analysis able to operate in the particular ion monitoring acquisition mode. Using BAμE to compare several sorbent coatings (five porous carbon and six polymers), it was discovered that activated carbon (AC2) was the optimum compromise among specificity and effectiveness. 17-estradiol, estrone, sulfamethoxazole, diclofenac, triclosan, gemfibrozil, 17-ethinylestradiol, mefenamic acid, and clofibric acid were chosen as system drugs to represent different treatment groups. Despite their lower porosity, statistics revealed that low-T-activated hydrochars, made from carbohydrates and a eutectic salt mixture at constant temperature (e.g., 180°C) and autogenerated pressures, could compete at the top level commercially carbonaceous materials in this purpose. These L-T-activated hydrochars had the best overall recovery (between 21.8 and 83.5 percent) for the simultaneous analysis of ten targeted PhCs with very different physical and chemical possessions, utilizing higher-efficiency liquid chromatography diode array identification.","PeriodicalId":7279,"journal":{"name":"Adsorption Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6153630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thirteen carbon materials were tested as sorbent layers in bar adsorbent microextraction (BAμE) to monitor hint amounts of 10 common pharmaceutical compounds (PhCs) in surface and groundwater matrices such as surface and groundwater, saltwater, spring water, and sewage. The persistence of trace amounts of three organophosphate insect repellent and cis and trans permethrin (PERM) in water quality matrices is suggested using bar adsorptive microextraction in conjunction with microliquid dissolution accompanied by significant volume injection-gas chromatography-mass spectroscopic analysis able to operate in the particular ion monitoring acquisition mode. Using BAμE to compare several sorbent coatings (five porous carbon and six polymers), it was discovered that activated carbon (AC2) was the optimum compromise among specificity and effectiveness. 17-estradiol, estrone, sulfamethoxazole, diclofenac, triclosan, gemfibrozil, 17-ethinylestradiol, mefenamic acid, and clofibric acid were chosen as system drugs to represent different treatment groups. Despite their lower porosity, statistics revealed that low-T-activated hydrochars, made from carbohydrates and a eutectic salt mixture at constant temperature (e.g., 180°C) and autogenerated pressures, could compete at the top level commercially carbonaceous materials in this purpose. These L-T-activated hydrochars had the best overall recovery (between 21.8 and 83.5 percent) for the simultaneous analysis of ten targeted PhCs with very different physical and chemical possessions, utilizing higher-efficiency liquid chromatography diode array identification.
碳基吸附层棒状吸附剂微萃取法鉴别药品
采用棒状吸附微萃取法(BAμE)对13种碳材料作为吸附层,监测地表水、地下水、咸水、泉水、污水等地表水基质中10种常见药物化合物(PhCs)的痕量。采用棒状吸附微萃取-微液溶解-气相色谱-质谱分析方法,研究了三种有机磷驱蚊剂和顺式、反式氯菊酯(PERM)在水质基质中的持久性,该方法能够在特定的离子监测获取模式下运行。采用BAμE对不同的吸附膜(5种多孔碳和6种聚合物)进行了比较,发现活性炭(AC2)在特异性和有效性之间是最佳的折衷。系统药物选择17-雌二醇、雌酮、磺胺甲恶唑、双氯芬酸、三氯生、吉非罗齐、17-炔雌醇、甲氧胺酸、纤维酸代表不同的治疗组。尽管孔隙度较低,但统计数据显示,由碳水化合物和共晶盐混合物在恒温(例如180°C)和自生压力下制成的低t活化的碳氢化合物,在这方面可以与顶级的商业碳质材料竞争。这些l - t活化的水合物具有最佳的总回收率(21.8%至83.5%),用于同时分析10种具有不同物理和化学性质的目标PhCs,利用高效液相色谱二极管阵列鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信