On quantitative dynamic data flow tracking

Enrico Lovat, Johan Oudinet, A. Pretschner
{"title":"On quantitative dynamic data flow tracking","authors":"Enrico Lovat, Johan Oudinet, A. Pretschner","doi":"10.1145/2557547.2557551","DOIUrl":null,"url":null,"abstract":"We present a non-probabilistic model for dynamic quantitative data flow tracking. Estimations of the amount of data stored in a particular representation at runtime - a file, a window, a network packet - enable the adoption of fine-grained policies which authorize or prohibit partial leaks of data. We prove the correctness of the estimations, provide an implementation that we evaluate w.r.t. precision and performance, and analyze one instantiation at the OS level.","PeriodicalId":90472,"journal":{"name":"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy","volume":"24 1","pages":"211-222"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2557547.2557551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We present a non-probabilistic model for dynamic quantitative data flow tracking. Estimations of the amount of data stored in a particular representation at runtime - a file, a window, a network packet - enable the adoption of fine-grained policies which authorize or prohibit partial leaks of data. We prove the correctness of the estimations, provide an implementation that we evaluate w.r.t. precision and performance, and analyze one instantiation at the OS level.
定量动态数据流跟踪
提出了一种用于动态定量数据流跟踪的非概率模型。在运行时对特定表示形式(文件、窗口、网络数据包)中存储的数据量进行估计,可以采用细粒度策略来授权或禁止部分数据泄漏。我们证明了估计的正确性,提供了一个评估w.r.t.精度和性能的实现,并在操作系统级别分析了一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信