Megha Vamsi Kiran Choda, Sri Vardhan Perla, Brahmender Shaik, Yuva Teja Anirudh Yelchuru, P. Yalla
{"title":"A Critical Survey on Real-Time Traffic Sign Recognition by using CNN Machine Learning Algorithm","authors":"Megha Vamsi Kiran Choda, Sri Vardhan Perla, Brahmender Shaik, Yuva Teja Anirudh Yelchuru, P. Yalla","doi":"10.1109/IDCIoT56793.2023.10053394","DOIUrl":null,"url":null,"abstract":"Real-Time Traffic Sign Recognition System (RTTSRS) is used for recognizing the traffic signboards (Take left, take right, speed limit 60 kmph… etc.), it plays a crucial role in the domains of driverless vehicles etc. By using Real-Time Traffic Sign Recognition, Traffic related problems can be reduced. It is categorized into two types- localization and recognition. Localization deals with identifying and locating traffic sign regions within the radius. Real-Time Traffic Sign Recognition is used to identify the traffic sign region within the space (rectangular) provided. This study describes an approach for a traffic sign recognition system, many machine learning algorithms like Support Vector Machine (SVM) and Convolutional Neural Networks (CNN) have been studied for recognizing traffic signs. This study has conducted a critical investigation on various machine learning algorithms which gives high accuracy to predict, recognize real-time traffic signs.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"20 1","pages":"445-450"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Real-Time Traffic Sign Recognition System (RTTSRS) is used for recognizing the traffic signboards (Take left, take right, speed limit 60 kmph… etc.), it plays a crucial role in the domains of driverless vehicles etc. By using Real-Time Traffic Sign Recognition, Traffic related problems can be reduced. It is categorized into two types- localization and recognition. Localization deals with identifying and locating traffic sign regions within the radius. Real-Time Traffic Sign Recognition is used to identify the traffic sign region within the space (rectangular) provided. This study describes an approach for a traffic sign recognition system, many machine learning algorithms like Support Vector Machine (SVM) and Convolutional Neural Networks (CNN) have been studied for recognizing traffic signs. This study has conducted a critical investigation on various machine learning algorithms which gives high accuracy to predict, recognize real-time traffic signs.