Ngan Le Viet, Huyen Trang Luu Thi, Xuan Nguyen Thi, Trang Vu Thi
{"title":"Research for stability of food products and functional foods","authors":"Ngan Le Viet, Huyen Trang Luu Thi, Xuan Nguyen Thi, Trang Vu Thi","doi":"10.47866/2615-9252/vjfc.3913","DOIUrl":null,"url":null,"abstract":"The study uses rapid aging and real-condition methods to assess the stability of frozen meat, yogurt and functional foods. The method of real conditions is applied to frozen meat and yogurt with the following factors being: temperature: -20°C ± 2°C; humidity: 100% for frozen meat and temperature: 4°C ± 2°C; humidity: > 80% for yogurt. The accelerated aging method is applied to functional foods in conditions: 35 ± 2°C, 45 ± 2°C, 55 ± 2°C, and humidity: 70 ± 5% in parallel assessment combination with real-time monitoring at 25 ± 2°C, and humidity 70 ± 5%. The results showed that the yogurt sample reached stability until the 45th day and did not reach from the 47th day due to layering and deposits at the bottom of the box. The frozen meat sample remained stable when monitored until the 12.6 months with all indicators. Functional food samples were estimated to reach stability of up to 40.3 months when using the Van't Hoff formula, 32.0 months when using the Q10 coefficient, and 36.8 months when monitored in real conditions. The results of the study indicate that the less stable criteria on each sample background are the basis for selecting evaluation criteria for subsequent studies that contribute to reducing the cost of monitoring. The difference in the time it takes to estimate the stability of the product when using different methods also helps manufacturers consider the appropriate evaluation method for their products.","PeriodicalId":12896,"journal":{"name":"Heavy metals and arsenic concentrations in water, agricultural soil, and rice in Ngan Son district, Bac Kan province, Vietnam","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heavy metals and arsenic concentrations in water, agricultural soil, and rice in Ngan Son district, Bac Kan province, Vietnam","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47866/2615-9252/vjfc.3913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The study uses rapid aging and real-condition methods to assess the stability of frozen meat, yogurt and functional foods. The method of real conditions is applied to frozen meat and yogurt with the following factors being: temperature: -20°C ± 2°C; humidity: 100% for frozen meat and temperature: 4°C ± 2°C; humidity: > 80% for yogurt. The accelerated aging method is applied to functional foods in conditions: 35 ± 2°C, 45 ± 2°C, 55 ± 2°C, and humidity: 70 ± 5% in parallel assessment combination with real-time monitoring at 25 ± 2°C, and humidity 70 ± 5%. The results showed that the yogurt sample reached stability until the 45th day and did not reach from the 47th day due to layering and deposits at the bottom of the box. The frozen meat sample remained stable when monitored until the 12.6 months with all indicators. Functional food samples were estimated to reach stability of up to 40.3 months when using the Van't Hoff formula, 32.0 months when using the Q10 coefficient, and 36.8 months when monitored in real conditions. The results of the study indicate that the less stable criteria on each sample background are the basis for selecting evaluation criteria for subsequent studies that contribute to reducing the cost of monitoring. The difference in the time it takes to estimate the stability of the product when using different methods also helps manufacturers consider the appropriate evaluation method for their products.