Certifying operator identities via noncommutative Gröbner bases

Clemens Hofstadler, C. Raab, G. Regensburger
{"title":"Certifying operator identities via noncommutative Gröbner bases","authors":"Clemens Hofstadler, C. Raab, G. Regensburger","doi":"10.1145/3371991.3371996","DOIUrl":null,"url":null,"abstract":"Matrices or linear operators and their identities can be modelled algebraically by noncommutative polynomials in the free algebra. For proving new identities of matrices or operators from given ones, computations are done formally with noncommutative polynomials. Computations in the free algebra, however, are not necessarily compatible with formats of matrices resp. with domains and codomains of operators. For ensuring validity of such computations in terms of operators, in principle, one would have to inspect every step of the computation. In [9], an algebraic framework is developed that allows to rigorously justify such computations without restricting the computation to compatible expressions. The main result of that paper reduces the proof of an operator identity to verifying membership of the corresponding polynomial in the ideal generated by the polynomials corresponding to the assumptions and verifying compatibility of this polynomial and of the generators of the ideal.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"12 1","pages":"49-52"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371991.3371996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Matrices or linear operators and their identities can be modelled algebraically by noncommutative polynomials in the free algebra. For proving new identities of matrices or operators from given ones, computations are done formally with noncommutative polynomials. Computations in the free algebra, however, are not necessarily compatible with formats of matrices resp. with domains and codomains of operators. For ensuring validity of such computations in terms of operators, in principle, one would have to inspect every step of the computation. In [9], an algebraic framework is developed that allows to rigorously justify such computations without restricting the computation to compatible expressions. The main result of that paper reduces the proof of an operator identity to verifying membership of the corresponding polynomial in the ideal generated by the polynomials corresponding to the assumptions and verifying compatibility of this polynomial and of the generators of the ideal.
通过不可交换的Gröbner基认证算子身份
矩阵或线性算子及其恒等式可以用自由代数中的非交换多项式进行代数建模。为了从给定的矩阵或算子证明新的恒等式,计算是用非交换多项式正式完成的。然而,自由代数中的计算不一定与矩阵的格式兼容。有算子的域和上域。原则上,为了确保这种计算在运算符方面的有效性,必须检查计算的每一步。在[9]中,开发了一个代数框架,允许严格地证明此类计算,而不将计算限制为兼容表达式。本文的主要结果是将算子恒等式的证明简化为验证由与假设相对应的多项式所生成的理想中相应多项式的隶属性,以及验证该多项式与理想的生成器的相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信