Microwave sintering of ZrB2-based ceramics: A review

Samira Savani, M. Alipour, Ankur Sharma, D. Benny Karunakar
{"title":"Microwave sintering of ZrB2-based ceramics: A review","authors":"Samira Savani, M. Alipour, Ankur Sharma, D. Benny Karunakar","doi":"10.53063/synsint.2023.33129","DOIUrl":null,"url":null,"abstract":"Recently, microwave sintering has absorbed remarkable attention on the basis of enhanced microstructural/mechanical characteristics in comparison with conventional sintering techniques based on powder technology. This method not only can be employed for the processing of metals, alloys, and metal matrix composites but also for the manufacturing of advanced ceramics and ceramic matrix composites. Zirconium diboride (ZrB2) as an interesting member of ultrahigh temperature ceramics is one of the most undertaking candidates in modern structural ceramics applications. This paper reviews the processing-densification-mechanical properties correlations in microwave-sintered ZrB2-based ceramics and composites. The text concentrates on the microwave-assisted production of ZrB2 divided into two categories: synthesis of ZrB2 powders by microwave sintering and sintering of ZrB2-based ceramics and composites by microwave sintering. The effects of some additives and reinforcements, such as B4C, SiC, TiC, and MgO, on zirconium diboride's densification and mechanical properties are summarized.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Sintering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53063/synsint.2023.33129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, microwave sintering has absorbed remarkable attention on the basis of enhanced microstructural/mechanical characteristics in comparison with conventional sintering techniques based on powder technology. This method not only can be employed for the processing of metals, alloys, and metal matrix composites but also for the manufacturing of advanced ceramics and ceramic matrix composites. Zirconium diboride (ZrB2) as an interesting member of ultrahigh temperature ceramics is one of the most undertaking candidates in modern structural ceramics applications. This paper reviews the processing-densification-mechanical properties correlations in microwave-sintered ZrB2-based ceramics and composites. The text concentrates on the microwave-assisted production of ZrB2 divided into two categories: synthesis of ZrB2 powders by microwave sintering and sintering of ZrB2-based ceramics and composites by microwave sintering. The effects of some additives and reinforcements, such as B4C, SiC, TiC, and MgO, on zirconium diboride's densification and mechanical properties are summarized.
zrb2基陶瓷的微波烧结研究进展
近年来,与基于粉末技术的传统烧结技术相比,微波烧结在增强显微组织/力学特性的基础上引起了人们的广泛关注。该方法不仅可用于金属、合金和金属基复合材料的加工,也可用于制造高级陶瓷和陶瓷基复合材料。二硼化锆(ZrB2)作为超高温陶瓷的一个有趣的成员,是现代结构陶瓷应用中最有前途的候选材料之一。本文综述了微波烧结zrb2基陶瓷及其复合材料的加工-致密-力学性能关系。本文主要介绍了微波辅助制备ZrB2的方法,分为微波烧结制备ZrB2粉末和微波烧结制备ZrB2基陶瓷及复合材料两大类。综述了B4C、SiC、TiC、MgO等添加剂和增强剂对二硼化锆致密化和力学性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信