Improving Operational Planning study models with historical generation and load data

A. Alam, Jun Zhu, V. Frey, Ruili Zhao, T. Hoang, S. Larson, Sumit Mundade, Salvador Ruelas, Anastasiya Herasimava
{"title":"Improving Operational Planning study models with historical generation and load data","authors":"A. Alam, Jun Zhu, V. Frey, Ruili Zhao, T. Hoang, S. Larson, Sumit Mundade, Salvador Ruelas, Anastasiya Herasimava","doi":"10.1109/TDC.2016.7520038","DOIUrl":null,"url":null,"abstract":"Variable generation dispatch and load distribution patterns due to renewables connected to transmission, distributed energy resources connected to the distribution system and the operation of electricity markets warrant that historical load and generation conditions be modeled in offline studies on a continuous basis instead of using the traditional peak load cases for Operations Planning studies. Modeling of these system conditions into Operations Planning study models is also essential for after-the-fact event analysis, improving study models and for providing better insight into outage reliability studies. This paper presents a method implemented at California ISO (CAISO) using Python and GE Positive Sequence Load Flow (PSLF) to integrate real-time system operating conditions with Operational Planning models to provide study models with real-time load and generation conditions.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"34 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7520038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Variable generation dispatch and load distribution patterns due to renewables connected to transmission, distributed energy resources connected to the distribution system and the operation of electricity markets warrant that historical load and generation conditions be modeled in offline studies on a continuous basis instead of using the traditional peak load cases for Operations Planning studies. Modeling of these system conditions into Operations Planning study models is also essential for after-the-fact event analysis, improving study models and for providing better insight into outage reliability studies. This paper presents a method implemented at California ISO (CAISO) using Python and GE Positive Sequence Load Flow (PSLF) to integrate real-time system operating conditions with Operational Planning models to provide study models with real-time load and generation conditions.
利用历史发电量和负荷数据改进运行计划研究模型
由于可再生能源接入输电系统、分布式能源接入配电系统以及电力市场的运行,发电调度和负荷分配模式发生了变化,因此需要在离线研究中对历史负荷和发电条件进行连续建模,而不是在运营规划研究中使用传统的峰值负荷案例。将这些系统条件建模到运营计划研究模型中,对于事后事件分析、改进研究模型以及更好地了解停机可靠性研究也至关重要。本文提出了一种在加州ISO (CAISO)实现的方法,使用Python和GE正序负荷流(PSLF)将实时系统运行条件与运行规划模型相结合,为研究模型提供实时负荷和发电条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信