A remark for spatial analyticity around straining flows

S. Hattori, O. Sawada
{"title":"A remark for spatial analyticity around straining flows","authors":"S. Hattori, O. Sawada","doi":"10.7153/DEA-2018-10-26","DOIUrl":null,"url":null,"abstract":"Time-local existence of unique smooth solutions to the Navier-Stokes equations in the whole space with linearly growing initial data has been established, via smoothing properties of Ornstein-Uhlenbeck semigroup. It has also been shown that the solution is real-analytic in spatial variables around rotating flows. This note is devoted to prove the spatial analyticity for cases of straining flows and shear flows. It is estimated the size of radius of convergence of Taylor series, due to estimates for higher order derivatives and Cauchy-Hadamard theorem.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"54 1","pages":"387-395"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2018-10-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time-local existence of unique smooth solutions to the Navier-Stokes equations in the whole space with linearly growing initial data has been established, via smoothing properties of Ornstein-Uhlenbeck semigroup. It has also been shown that the solution is real-analytic in spatial variables around rotating flows. This note is devoted to prove the spatial analyticity for cases of straining flows and shear flows. It is estimated the size of radius of convergence of Taylor series, due to estimates for higher order derivatives and Cauchy-Hadamard theorem.
关于应变流动的空间分析的评述
利用Ornstein-Uhlenbeck半群的光滑性质,建立了具有线性增长初始数据的Navier-Stokes方程在全空间上唯一光滑解的时间局部存在性。在旋转流周围的空间变量中,解是实解析的。本文致力于证明应变流和剪切流的空间解析性。利用高阶导数的估计和Cauchy-Hadamard定理,估计了泰勒级数收敛半径的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信