{"title":"Quantum Fluctuations and Large Deviation Principle for Microscopic Currents of Free Fermions in Disordered Media","authors":"J. Bru, W. Pedra, A. Ratsimanetrimanana","doi":"10.2140/PAA.2020.2.205","DOIUrl":null,"url":null,"abstract":"We contribute an extension of large-deviation results obtained in [N.J.B. Aza, J.-B. Bru, W. de Siqueira Pedra, A. Ratsimanetrimanana, J. Math. Pures Appl. 125 (2019) 209] on conductivity theory at atomic scale of free lattice fermions in disordered media. Disorder is modeled by (i) a random external potential, like in the celebrated Anderson model, and (ii) a nearest-neighbor hopping term with random complex-valued amplitudes. In accordance with experimental observations, via the large deviation formalism, our previous paper showed in this case that quantum uncertainty of microscopic electric current densities around their (classical) macroscopic value is suppressed, exponentially fast with respect to the volume of the region of the lattice where an external electric field is applied. Here, the quantum fluctuations of linear response currents are shown to exist in the thermodynamic limit and we mathematically prove that they are related to the rate function of the large deviation principle associated with current densities. We also demonstrate that, in general, they do not vanish (in the thermodynamic limit) and the quantum uncertainty around the macroscopic current density disappears exponentially fast with an exponential rate proportional to the squared deviation of the current from its macroscopic value and the inverse current fluctuation, with respect to growing space (volume) scales.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/PAA.2020.2.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We contribute an extension of large-deviation results obtained in [N.J.B. Aza, J.-B. Bru, W. de Siqueira Pedra, A. Ratsimanetrimanana, J. Math. Pures Appl. 125 (2019) 209] on conductivity theory at atomic scale of free lattice fermions in disordered media. Disorder is modeled by (i) a random external potential, like in the celebrated Anderson model, and (ii) a nearest-neighbor hopping term with random complex-valued amplitudes. In accordance with experimental observations, via the large deviation formalism, our previous paper showed in this case that quantum uncertainty of microscopic electric current densities around their (classical) macroscopic value is suppressed, exponentially fast with respect to the volume of the region of the lattice where an external electric field is applied. Here, the quantum fluctuations of linear response currents are shown to exist in the thermodynamic limit and we mathematically prove that they are related to the rate function of the large deviation principle associated with current densities. We also demonstrate that, in general, they do not vanish (in the thermodynamic limit) and the quantum uncertainty around the macroscopic current density disappears exponentially fast with an exponential rate proportional to the squared deviation of the current from its macroscopic value and the inverse current fluctuation, with respect to growing space (volume) scales.
我们提供了在[N.J.B.]中得到的大偏差结果的扩展阿扎,J.-B。Bru, W. de Siqueira Pedra, A. Ratsimanetrimanana, J. Math。[2]张建军,张建军。无序介质中自由晶格费米子的原子尺度电导率理论。光子学报,125(2019):209]。无序由(i)一个随机的外部电位,如著名的安德森模型,和(ii)一个具有随机复值振幅的最近邻跳跃项来建模。根据实验观察,通过大偏差形式,我们之前的论文表明,在这种情况下,微观电流密度在其(经典)宏观值周围的量子不确定性被抑制,相对于施加外电场的晶格区域的体积而言,其速度呈指数级增长。本文证明了线性响应电流的量子涨落存在于热力学极限,并从数学上证明了它们与电流密度相关的大偏差原理的速率函数有关。我们还证明,在一般情况下,它们不会消失(在热力学极限下),宏观电流密度周围的量子不确定性以指数速度消失,其指数速率与电流与其宏观值的平方偏差和反向电流波动成正比,相对于增长的空间(体积)尺度。