Thermal field of large-diameter concrete filled steel tubular members under solar radiation

IF 2.9 4区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Daigeng Yang, Guorong Chen, X. Ding, Juncai Xu
{"title":"Thermal field of large-diameter concrete filled steel tubular members under solar radiation","authors":"Daigeng Yang, Guorong Chen, X. Ding, Juncai Xu","doi":"10.12989/CAC.2020.26.4.343","DOIUrl":null,"url":null,"abstract":"Concrete-filled steel tubular (CFST) members have been widely used in engineering, and their tube diameters have become larger and larger. But there is no research on the thermal field of large-diameter CFST structure. These studies focused on the thermal field of the large-diameter CFST structure under solar radiation. The environmental factors and the actual placement position were considered, and the finite element model (FEM) of the thermal field of CFST members under solar radiation (SR) was established. Then the FEM was verified by practical experiments. The most unfavorable temperature gradient model in the cross-section was proposed. The testing results showed that the temperature field of the large-diameter CFST member section was non-linearly distributed due to the influence of SR. The temperature field results of CFST members with different pipe diameters indicated that the larger the core concrete diameter was, the slower the central temperature changed, and there was a significant temperature difference between the center and the boundary. Based on the numerical model, the most unfavorable temperature gradient model in the section was proposed. The model showed that the temperature difference around the center of the circle is small, and the boundary temperature difference is significant. The maximum temperature difference is 15.22oC, which appeared in the southern boundary area of the specimen. Therefore, it is necessary to consider the influence of SR on the thermal field of the member for large-diameter CFST members in actual engineering, which causes a large temperature gradient in the member.","PeriodicalId":50625,"journal":{"name":"Computers and Concrete","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/CAC.2020.26.4.343","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Concrete-filled steel tubular (CFST) members have been widely used in engineering, and their tube diameters have become larger and larger. But there is no research on the thermal field of large-diameter CFST structure. These studies focused on the thermal field of the large-diameter CFST structure under solar radiation. The environmental factors and the actual placement position were considered, and the finite element model (FEM) of the thermal field of CFST members under solar radiation (SR) was established. Then the FEM was verified by practical experiments. The most unfavorable temperature gradient model in the cross-section was proposed. The testing results showed that the temperature field of the large-diameter CFST member section was non-linearly distributed due to the influence of SR. The temperature field results of CFST members with different pipe diameters indicated that the larger the core concrete diameter was, the slower the central temperature changed, and there was a significant temperature difference between the center and the boundary. Based on the numerical model, the most unfavorable temperature gradient model in the section was proposed. The model showed that the temperature difference around the center of the circle is small, and the boundary temperature difference is significant. The maximum temperature difference is 15.22oC, which appeared in the southern boundary area of the specimen. Therefore, it is necessary to consider the influence of SR on the thermal field of the member for large-diameter CFST members in actual engineering, which causes a large temperature gradient in the member.
太阳辐射下大直径钢管混凝土构件的热场
钢管混凝土构件在工程中得到了广泛的应用,其管径也越来越大。但目前还没有对大直径钢管混凝土结构的热场进行研究。这些研究主要集中在太阳辐射下大直径CFST结构的热场。考虑环境因素和实际放置位置,建立了太阳辐射作用下CFST构件热场的有限元模型。通过实际实验验证了有限元方法的正确性。提出了截面上最不利温度梯度模型。试验结果表明,受sr的影响,大直径CFST构件截面温度场呈非线性分布。不同管径CFST构件温度场结果表明,核心混凝土直径越大,中心温度变化越慢,中心与边界存在显著温差。在数值模型的基础上,提出了该断面最不利温度梯度模型。模型表明,圆心周围的温差较小,边界温差较大。最大温差为15.22oC,出现在试件的南部边界区域。因此,在实际工程中,对于大直径CFST构件,有必要考虑SR对构件热场的影响,SR对构件产生较大的温度梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Concrete
Computers and Concrete 工程技术-材料科学:表征与测试
CiteScore
8.60
自引率
7.30%
发文量
0
审稿时长
13.5 months
期刊介绍: Computers and Concrete is An International Journal that focuses on the computer applications in be considered suitable for publication in the journal. The journal covers the topics related to computational mechanics of concrete and modeling of concrete structures including plasticity fracture mechanics creep thermo-mechanics dynamic effects reliability and safety concepts automated design procedures stochastic mechanics performance under extreme conditions.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信