{"title":"An Elastica Geodesic Approach with Convexity Shape Prior","authors":"Da Chen, L. Cohen, J. Mirebeau, X. Tai","doi":"10.1109/ICCV48922.2021.00682","DOIUrl":null,"url":null,"abstract":"The minimal geodesic models based on the Eikonal equations are capable of finding suitable solutions in various image segmentation scenarios. Existing geodesic-based segmentation approaches usually exploit the image features in conjunction with geometric regularization terms (such as curve length or elastica length) for computing geodesic paths. In this paper, we consider a more complicated problem: finding simple and closed geodesic curves which are imposed a convexity shape prior. The proposed approach relies on an orientation-lifting strategy, by which a planar curve can be mapped to an high-dimensional orientation space. The convexity shape prior serves as a constraint for the construction of local metrics. The geodesic curves in the lifted space then can be efficiently computed through the fast marching method. In addition, we introduce a way to incorporate region-based homogeneity features into the proposed geodesic model so as to solve the region-based segmentation issues with shape prior constraints.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"33 1","pages":"6880-6889"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The minimal geodesic models based on the Eikonal equations are capable of finding suitable solutions in various image segmentation scenarios. Existing geodesic-based segmentation approaches usually exploit the image features in conjunction with geometric regularization terms (such as curve length or elastica length) for computing geodesic paths. In this paper, we consider a more complicated problem: finding simple and closed geodesic curves which are imposed a convexity shape prior. The proposed approach relies on an orientation-lifting strategy, by which a planar curve can be mapped to an high-dimensional orientation space. The convexity shape prior serves as a constraint for the construction of local metrics. The geodesic curves in the lifted space then can be efficiently computed through the fast marching method. In addition, we introduce a way to incorporate region-based homogeneity features into the proposed geodesic model so as to solve the region-based segmentation issues with shape prior constraints.