{"title":"CUS-RF-Based Credit Card Fraud Detection with Imbalanced Data","authors":"Wei Li, Cheng-shu Wu, Sumei Ruan","doi":"10.54560/jracr.v12i3.332","DOIUrl":null,"url":null,"abstract":"With the continuous expansion of the banks' credit card businesses, credit card fraud has become a serious threat to banking financial institutions. So, the automatic and real-time credit card fraud detection is the meaningful research work. Because machine learning has the characteristics of non-linearity, automation, and intelligence, so that credit card fraud detection can improve the detection efficiency and accuracy. In view of this, this paper proposes a credit card fraud detection model based on heterogeneous ensemble, namely CUS-RF (cluster-based under-sampling boosting and random forest), based on clustering under-sampling and random forest algorithm. CUS-RF-based credit card fraud detection model has the following advantages. Firstly, the CUS-RF model can better overcome the issue of data imbalance. Secondly, based on the idea of heterogeneous ensemble learning, the clustering under-sampling method and random forest model are fused to achieve a better performance for credit card fraud detection. Finally, through the verification of real credit card fraud dataset, the CUS-RF model proposed in this paper has achieved better performance in credit card fraud detection compared with the benchmark model.","PeriodicalId":31887,"journal":{"name":"Journal of Risk Analysis and Crisis Response JRACR","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk Analysis and Crisis Response JRACR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54560/jracr.v12i3.332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous expansion of the banks' credit card businesses, credit card fraud has become a serious threat to banking financial institutions. So, the automatic and real-time credit card fraud detection is the meaningful research work. Because machine learning has the characteristics of non-linearity, automation, and intelligence, so that credit card fraud detection can improve the detection efficiency and accuracy. In view of this, this paper proposes a credit card fraud detection model based on heterogeneous ensemble, namely CUS-RF (cluster-based under-sampling boosting and random forest), based on clustering under-sampling and random forest algorithm. CUS-RF-based credit card fraud detection model has the following advantages. Firstly, the CUS-RF model can better overcome the issue of data imbalance. Secondly, based on the idea of heterogeneous ensemble learning, the clustering under-sampling method and random forest model are fused to achieve a better performance for credit card fraud detection. Finally, through the verification of real credit card fraud dataset, the CUS-RF model proposed in this paper has achieved better performance in credit card fraud detection compared with the benchmark model.