Main Memory Adaptive Denormalization

Zezhou Liu, Stratos Idreos
{"title":"Main Memory Adaptive Denormalization","authors":"Zezhou Liu, Stratos Idreos","doi":"10.1145/2882903.2914835","DOIUrl":null,"url":null,"abstract":"Joins have traditionally been the most expensive database operator, but they are required to query normalized schemas. In turn, normalized schemas are necessary to minimize update costs and space usage. Joins can be avoided altogether by using a denormalized schema instead of a normalized schema; this improves analytical query processing times at the tradeof increased update overhead, loading cost, and storage requirements. In our work, we show that we can achieve the best of both worlds by leveraging partial, incremental, and dynamic denormalized tables to avoid join operators, resulting in fast query performance while retaining the minimized loading, update, and storage costs of a normalized schema. We introduce adaptive denormalization for modern main memory systems. We replace the traditional join operations with efficient scans over the relevant partial universal tables without incurring the prohibitive cost of full denormalization.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2914835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Joins have traditionally been the most expensive database operator, but they are required to query normalized schemas. In turn, normalized schemas are necessary to minimize update costs and space usage. Joins can be avoided altogether by using a denormalized schema instead of a normalized schema; this improves analytical query processing times at the tradeof increased update overhead, loading cost, and storage requirements. In our work, we show that we can achieve the best of both worlds by leveraging partial, incremental, and dynamic denormalized tables to avoid join operators, resulting in fast query performance while retaining the minimized loading, update, and storage costs of a normalized schema. We introduce adaptive denormalization for modern main memory systems. We replace the traditional join operations with efficient scans over the relevant partial universal tables without incurring the prohibitive cost of full denormalization.
主存储器自适应反规范化
传统上,连接是最昂贵的数据库操作符,但是查询规范化模式需要连接。反过来,规范化模式对于最小化更新成本和空间使用是必要的。通过使用非规范化模式而不是规范化模式,可以完全避免连接;这以增加更新开销、加载成本和存储需求为代价,提高了分析查询处理时间。在我们的工作中,我们展示了我们可以通过利用部分表、增量表和动态非规范化表来避免连接操作符,从而实现两全其美,从而在保持规范化模式的最小加载、更新和存储成本的同时获得快速查询性能。我们为现代主存系统引入了自适应非规范化。我们用对相关部分通用表的高效扫描取代了传统的连接操作,而不会产生完全反规范化的高昂成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信