Introducing quest: a query-driven framework to explain classification models on tabular data

Nadja Geisler, Carsten Binnig
{"title":"Introducing quest: a query-driven framework to explain classification models on tabular data","authors":"Nadja Geisler, Carsten Binnig","doi":"10.1145/3546930.3547497","DOIUrl":null,"url":null,"abstract":"Machine learning models are everywhere now; but only few of them are transparent in how they work. To remedy this, local explanations aim to show users how and why learned models produce a certain output for a given input (data sample). However, most existing approaches for are oriented around images or text data and, thus, cannot leverage the structure and properties of tabular data. Therefore, we present Quest, a new framework for generating explanations that are a better fit for tabular data. The main idea is to create explanations in the form of relational predicates (called queries hereafter) that approximate the behavior of a classifier around the given sample. In an initial evaluation, we show anecdotally how Quest can be used on a tabular data set compared to existing approaches that can be applied on tabular data.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"145 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546930.3547497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning models are everywhere now; but only few of them are transparent in how they work. To remedy this, local explanations aim to show users how and why learned models produce a certain output for a given input (data sample). However, most existing approaches for are oriented around images or text data and, thus, cannot leverage the structure and properties of tabular data. Therefore, we present Quest, a new framework for generating explanations that are a better fit for tabular data. The main idea is to create explanations in the form of relational predicates (called queries hereafter) that approximate the behavior of a classifier around the given sample. In an initial evaluation, we show anecdotally how Quest can be used on a tabular data set compared to existing approaches that can be applied on tabular data.
引入quest:一个查询驱动的框架,用于解释表格数据上的分类模型
现在机器学习模型无处不在;但其中只有少数是透明的。为了解决这个问题,局部解释旨在向用户展示学习模型如何以及为什么对给定的输入(数据样本)产生特定的输出。但是,大多数现有的方法都是面向图像或文本数据的,因此不能利用表格数据的结构和属性。因此,我们提出Quest,这是一个用于生成更适合表格数据的解释的新框架。其主要思想是以关系谓词(以下称为查询)的形式创建解释,这些解释近似于给定样本周围分类器的行为。在最初的评估中,我们展示了如何在表格数据集上使用Quest,并与可以应用于表格数据的现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信