Perturbed path following predictor-corrector interior point algorithms

IF 1.4 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
J. Bonnans, C. Pola, Raja Rébaï
{"title":"Perturbed path following predictor-corrector interior point algorithms","authors":"J. Bonnans, C. Pola, Raja Rébaï","doi":"10.1080/10556789908805751","DOIUrl":null,"url":null,"abstract":"The path following algorithms of predictor corrector type have proved to be very effective for solving linear optimization problems. However, the assumption that the Newton direction (corresponding to a centering or affine step) is computed exactly is unrealistic. Indeed, for large scale problems, one may need to use iterative algorithms for computing the Newton step. In this paper, we study algorithms in which the computed direction is the solution of the usual linear system with an error in the right-hand-side. We give precise and explicit estimates of the error under which the computational complexity is the same as for the standard case. We also give explicit estimates that guarantee an asymptotic linear convergence at an arbitrary rate. Finally, we present some encouraging numerical results. Because our results are in the framework of monotone linear complementarity problems, our results apply to convex quadratic optimization as well.","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"38 1","pages":"183-210"},"PeriodicalIF":1.4000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789908805751","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5

Abstract

The path following algorithms of predictor corrector type have proved to be very effective for solving linear optimization problems. However, the assumption that the Newton direction (corresponding to a centering or affine step) is computed exactly is unrealistic. Indeed, for large scale problems, one may need to use iterative algorithms for computing the Newton step. In this paper, we study algorithms in which the computed direction is the solution of the usual linear system with an error in the right-hand-side. We give precise and explicit estimates of the error under which the computational complexity is the same as for the standard case. We also give explicit estimates that guarantee an asymptotic linear convergence at an arbitrary rate. Finally, we present some encouraging numerical results. Because our results are in the framework of monotone linear complementarity problems, our results apply to convex quadratic optimization as well.
扰动路径跟踪预测校正内点算法
预测校正型路径跟踪算法对于求解线性优化问题是非常有效的。然而,假设牛顿方向(对应于定心或仿射步长)被精确计算是不现实的。实际上,对于大规模问题,可能需要使用迭代算法来计算牛顿步。在本文中,我们研究了计算方向是通常线性系统的解的算法,其右边有一个误差。在计算复杂度与标准情况相同的情况下,我们给出了精确而明确的误差估计。我们也给出了保证在任意速率下渐近线性收敛的显式估计。最后,给出了一些令人鼓舞的数值结果。由于我们的结果是在单调线性互补问题的框架内,所以我们的结果也适用于凸二次优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optimization Methods & Software
Optimization Methods & Software 工程技术-计算机:软件工程
CiteScore
4.50
自引率
0.00%
发文量
40
审稿时长
7 months
期刊介绍: Optimization Methods and Software publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design. Topics include: Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms. Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators. Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces. Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信