Evolutionary Computation Based Automatic SVM Model Selection

Yingqin Zhang
{"title":"Evolutionary Computation Based Automatic SVM Model Selection","authors":"Yingqin Zhang","doi":"10.1109/ICNC.2008.4","DOIUrl":null,"url":null,"abstract":"SVM performance is very sensitive to the parameter set. In this paper we propose an automatic and effective model selection method. It is based on evolutionary computation algorithms and use recall, precision and error rate estimated by xialpha-estimate as the optimization targets. Optimized by genetic algorithm (GA) or particle swarm optimization (PSO) algorithm, we demonstrate that SVM could automatically select its multiple parameters and optimize them. Experiments results also verify that by optimizing the bounds estimated by xialpha-estimate we could also improve the practical performance.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"32 1","pages":"66-70"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

SVM performance is very sensitive to the parameter set. In this paper we propose an automatic and effective model selection method. It is based on evolutionary computation algorithms and use recall, precision and error rate estimated by xialpha-estimate as the optimization targets. Optimized by genetic algorithm (GA) or particle swarm optimization (PSO) algorithm, we demonstrate that SVM could automatically select its multiple parameters and optimize them. Experiments results also verify that by optimizing the bounds estimated by xialpha-estimate we could also improve the practical performance.
基于进化计算的SVM模型自动选择
支持向量机的性能对参数集非常敏感。本文提出了一种自动有效的模型选择方法。该算法以进化计算算法为基础,以夏估计估计的查全率、查准率和错误率为优化目标。通过遗传算法(GA)和粒子群算法(PSO)的优化,证明了支持向量机可以自动选择多个参数并进行优化。实验结果也验证了通过优化xialpha估计的边界也可以提高实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信