Beyond Ranking: Optimizing Whole-Page Presentation

Yue Wang, Dawei Yin, Luo Jie, Pengyuan Wang, M. Yamada, Yi Chang, Q. Mei
{"title":"Beyond Ranking: Optimizing Whole-Page Presentation","authors":"Yue Wang, Dawei Yin, Luo Jie, Pengyuan Wang, M. Yamada, Yi Chang, Q. Mei","doi":"10.1145/2835776.2835824","DOIUrl":null,"url":null,"abstract":"Modern search engines aggregate results from different verticals: webpages, news, images, video, shopping, knowledge cards, local maps, etc. Unlike \"ten blue links\", these search results are heterogeneous in nature and not even arranged in a list on the page. This revolution directly challenges the conventional \"ranked list\" formulation in ad hoc search. Therefore, finding proper presentation for a gallery of heterogeneous results is critical for modern search engines. We propose a novel framework that learns the optimal page presentation to render heterogeneous results onto search result page (SERP). Page presentation is broadly defined as the strategy to present a set of items on SERP, much more expressive than a ranked list. It can specify item positions, image sizes, text fonts, and any other styles as long as variations are within business and design constraints. The learned presentation is content-aware, i.e. tailored to specific queries and returned results. Simulation experiments show that the framework automatically learns eye-catchy presentations for relevant results. Experiments on real data show that simple instantiations of the framework already outperform leading algorithm in federated search result presentation. It means the framework can learn its own result presentation strategy purely from data, without even knowing the \"probability ranking principle\".","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Modern search engines aggregate results from different verticals: webpages, news, images, video, shopping, knowledge cards, local maps, etc. Unlike "ten blue links", these search results are heterogeneous in nature and not even arranged in a list on the page. This revolution directly challenges the conventional "ranked list" formulation in ad hoc search. Therefore, finding proper presentation for a gallery of heterogeneous results is critical for modern search engines. We propose a novel framework that learns the optimal page presentation to render heterogeneous results onto search result page (SERP). Page presentation is broadly defined as the strategy to present a set of items on SERP, much more expressive than a ranked list. It can specify item positions, image sizes, text fonts, and any other styles as long as variations are within business and design constraints. The learned presentation is content-aware, i.e. tailored to specific queries and returned results. Simulation experiments show that the framework automatically learns eye-catchy presentations for relevant results. Experiments on real data show that simple instantiations of the framework already outperform leading algorithm in federated search result presentation. It means the framework can learn its own result presentation strategy purely from data, without even knowing the "probability ranking principle".
超越排名:优化整个页面的呈现
现代搜索引擎聚合来自不同垂直领域的结果:网页、新闻、图像、视频、购物、知识卡、本地地图等。与“十个蓝色链接”不同,这些搜索结果本质上是异构的,甚至没有排列在页面上的列表中。这一革命直接挑战了传统的“排名列表”公式在特设搜索。因此,为异构结果库找到合适的表示对于现代搜索引擎来说是至关重要的。我们提出了一种新的框架,该框架学习最佳页面表示,将异构结果呈现到搜索结果页面(SERP)上。页面呈现被广泛地定义为在SERP上呈现一组项目的策略,比排名列表更具表现力。它可以指定项目位置、图像大小、文本字体和任何其他样式,只要变化符合业务和设计约束。学习到的表示是内容感知的,即针对特定的查询和返回的结果进行定制。仿真实验表明,该框架可以自动学习引人注目的演示以获得相关结果。在实际数据上的实验表明,该框架的简单实例化在联邦搜索结果表示方面已经优于领先的算法。这意味着框架可以完全从数据中学习自己的结果表示策略,甚至不需要知道“概率排序原则”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信