Joshua Gutierrez-Ojeda, V. Ponomaryov, J. Almaraz-Damian, R. Reyes-Reyes, Clara Cruz-Ramos
{"title":"ECG Arrhythmia Classification Using Recurrence Plot and ResNet-18","authors":"Joshua Gutierrez-Ojeda, V. Ponomaryov, J. Almaraz-Damian, R. Reyes-Reyes, Clara Cruz-Ramos","doi":"10.47839/ijc.22.2.3083","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases are the leading cause of death worldwide, claiming approximately \n17.9 million lives each year. In this study, a novel CAD system to detect and classify electrocardiogram (ECG) signals is presented. Designed system employs the recurrence plot (RP) approach that transforms a ECG signal into a 2D representative colour image, finally performing their classifications via employment of Deep Learning architecture (ResNet-18). Novel system includes two steps, where the first step is the preprocessing one, which performs segmentation of the data into two-second intervals, finally forming images via the RP approach; following, in the second step, the RP images are classified by the ResNet- 18 network. The proposed method is evaluated on the MIT-BIH arrhythmia database where 5 principal types of arrhythmias that have medical relevance should be classified. Novel system can classify the before-mentioned quantity of diseases according to the AAMI Standard and appears to demonstrate good performance in terms of criteria: overall accuracy of 97.62%, precision of 95.42%, recall of 95.42%, F1-Score of 95.06%, and AUC of 95.7% that are competitive with better state-of-the-art systems. Additionally. the method demonstrated the ability in mitigating the problem of imbalanced samples.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.22.2.3083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases are the leading cause of death worldwide, claiming approximately
17.9 million lives each year. In this study, a novel CAD system to detect and classify electrocardiogram (ECG) signals is presented. Designed system employs the recurrence plot (RP) approach that transforms a ECG signal into a 2D representative colour image, finally performing their classifications via employment of Deep Learning architecture (ResNet-18). Novel system includes two steps, where the first step is the preprocessing one, which performs segmentation of the data into two-second intervals, finally forming images via the RP approach; following, in the second step, the RP images are classified by the ResNet- 18 network. The proposed method is evaluated on the MIT-BIH arrhythmia database where 5 principal types of arrhythmias that have medical relevance should be classified. Novel system can classify the before-mentioned quantity of diseases according to the AAMI Standard and appears to demonstrate good performance in terms of criteria: overall accuracy of 97.62%, precision of 95.42%, recall of 95.42%, F1-Score of 95.06%, and AUC of 95.7% that are competitive with better state-of-the-art systems. Additionally. the method demonstrated the ability in mitigating the problem of imbalanced samples.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.