Human-machine conversations to support multi-agency missions

A. Preece, Dave Braines, D. Pizzocaro, Christos Parizas
{"title":"Human-machine conversations to support multi-agency missions","authors":"A. Preece, Dave Braines, D. Pizzocaro, Christos Parizas","doi":"10.1145/2581555.2581568","DOIUrl":null,"url":null,"abstract":"In domains such as emergency response, environmental monitoring, policing and security, sensor and information networks are deployed to assist human users across multiple agencies to conduct missions at or near the 'front line'. These domains present challenging problems in terms of human-machine collaboration: human users need to task the network to help them achieve mission objectives, while humans (sometimes the same individuals) are also sources of mission-critical information. We propose a natural language-based conversational approach to supporting humanmachine working in mission-oriented sensor networks. We present a model for human-machine and machine-machine interactions in a realistic mission context, and evaluate the model using an existing surveillance mission scenario. The model supports the flow of conversations from full natural language to a form of Controlled Natural Language (CNL) amenable to machine processing and automated reasoning, including high-level information fusion tasks. We introduce a mechanism for presenting the gist of verbose CNL expressions in a more convenient form for human users. We show how the conversational interactions supported by the model include requests for expansions and explanations of machine-processed information.","PeriodicalId":43578,"journal":{"name":"Mobile Computing and Communications Review","volume":"178 1","pages":"75-84"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Computing and Communications Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2581555.2581568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In domains such as emergency response, environmental monitoring, policing and security, sensor and information networks are deployed to assist human users across multiple agencies to conduct missions at or near the 'front line'. These domains present challenging problems in terms of human-machine collaboration: human users need to task the network to help them achieve mission objectives, while humans (sometimes the same individuals) are also sources of mission-critical information. We propose a natural language-based conversational approach to supporting humanmachine working in mission-oriented sensor networks. We present a model for human-machine and machine-machine interactions in a realistic mission context, and evaluate the model using an existing surveillance mission scenario. The model supports the flow of conversations from full natural language to a form of Controlled Natural Language (CNL) amenable to machine processing and automated reasoning, including high-level information fusion tasks. We introduce a mechanism for presenting the gist of verbose CNL expressions in a more convenient form for human users. We show how the conversational interactions supported by the model include requests for expansions and explanations of machine-processed information.
人机对话支持多机构任务
在应急响应、环境监测、警务和安全等领域,部署了传感器和信息网络,以协助跨多个机构的人类用户在“前线”或“前线”附近执行任务。这些领域在人机协作方面提出了具有挑战性的问题:人类用户需要向网络分配任务,以帮助他们实现任务目标,而人类(有时是同一个人)也是任务关键信息的来源。我们提出了一种基于自然语言的会话方法来支持面向任务的传感器网络中的人机工作。我们提出了一个现实任务背景下的人机和机器-机器交互模型,并使用现有的监视任务场景评估该模型。该模型支持从完全自然语言到受控自然语言(CNL)形式的对话流,这种形式可用于机器处理和自动推理,包括高级信息融合任务。我们引入了一种机制,以更方便的形式为人类用户呈现冗长CNL表达式的要点。我们展示了模型支持的会话交互如何包括对扩展的请求和对机器处理的信息的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信