Machine Learning for Optimization of Mass-Produced Industrial Silicon Solar Cells

Hannes Wagner-Mohnsen, P. Altermatt
{"title":"Machine Learning for Optimization of Mass-Produced Industrial Silicon Solar Cells","authors":"Hannes Wagner-Mohnsen, P. Altermatt","doi":"10.1109/NUSOD52207.2021.9541457","DOIUrl":null,"url":null,"abstract":"We present a methodology where we combine numerical TCAD device modeling, machine learning and advanced statistics for getting a deeper understanding of how process variations influence device performance in mass produced crystalline silicon solar cells. For this, we use seven model input parameters that affect the mainstream solar cell design (PERC) and its performance the most and perform about a couple of hundred numerical TCAD device simulations in an expected range of these parameters. As such detailed numerical simulations take long time, we train and validate machine learning models on these simulations, which serve to describe ten thousands of fabricated PERC cells. The method gives concrete information for improving PERC cells with a modest amount of numerical modeling and hence in a very short time. This approach is not limited to a specific solar cell design or product.","PeriodicalId":6780,"journal":{"name":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"27 1","pages":"51-52"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD52207.2021.9541457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a methodology where we combine numerical TCAD device modeling, machine learning and advanced statistics for getting a deeper understanding of how process variations influence device performance in mass produced crystalline silicon solar cells. For this, we use seven model input parameters that affect the mainstream solar cell design (PERC) and its performance the most and perform about a couple of hundred numerical TCAD device simulations in an expected range of these parameters. As such detailed numerical simulations take long time, we train and validate machine learning models on these simulations, which serve to describe ten thousands of fabricated PERC cells. The method gives concrete information for improving PERC cells with a modest amount of numerical modeling and hence in a very short time. This approach is not limited to a specific solar cell design or product.
大规模生产工业硅太阳能电池的机器学习优化
我们提出了一种方法,将数值TCAD设备建模,机器学习和高级统计相结合,以更深入地了解工艺变化如何影响大规模生产的晶体硅太阳能电池中的设备性能。为此,我们使用了七个模型输入参数,这些参数对主流太阳能电池设计(PERC)及其性能影响最大,并在这些参数的预期范围内执行了大约几百个数值TCAD设备模拟。由于这种详细的数值模拟需要很长时间,我们在这些模拟上训练和验证机器学习模型,这些模型用于描述成千上万个制造的PERC电池。该方法为改进PERC电池提供了具体的信息,通过适度的数值模拟,因此在很短的时间内。这种方法并不局限于特定的太阳能电池设计或产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信