$K$-mean convex and $K$-outward minimizing sets

IF 1.2 4区 数学 Q1 MATHEMATICS
A. Cesaroni, M. Novaga
{"title":"$K$-mean convex and $K$-outward minimizing sets","authors":"A. Cesaroni, M. Novaga","doi":"10.4171/ifb/466","DOIUrl":null,"url":null,"abstract":"We consider the evolution of sets by nonlocal mean curvature and we discuss the preservation along the flow of two geometric properties, which are the mean convexity and the outward minimality. \nThe main tools in our analysis are the level set formulation and the minimizing movement scheme for the nonlocal flow. When the initial set is outward minimizing, we also show the convergence of the (time integrated) nonlocal perimeters of the discrete evolutions to the nonlocal perimeter of the limit flow.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"21 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/466","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We consider the evolution of sets by nonlocal mean curvature and we discuss the preservation along the flow of two geometric properties, which are the mean convexity and the outward minimality. The main tools in our analysis are the level set formulation and the minimizing movement scheme for the nonlocal flow. When the initial set is outward minimizing, we also show the convergence of the (time integrated) nonlocal perimeters of the discrete evolutions to the nonlocal perimeter of the limit flow.
$K$-平均凸集和$K$-向外最小化集
我们考虑了非局部平均曲率下集合的演化,并讨论了平均凸性和外极小性两个几何性质沿流的保持性。我们分析的主要工具是水平集公式和非局部流的最小运动方案。当初始集向外最小化时,我们还证明了离散演化的非局部周长(时间积分)收敛于极限流的非局部周长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信