Hyperplane separability and convexity of probabilistic point sets

IF 0.4 Q4 MATHEMATICS
Martin Fink, J. Hershberger, Nirman Kumar, S. Suri
{"title":"Hyperplane separability and convexity of probabilistic point sets","authors":"Martin Fink, J. Hershberger, Nirman Kumar, S. Suri","doi":"10.20382/jocg.v8i2a3","DOIUrl":null,"url":null,"abstract":"We describe an O(n^d) time algorithm for computing the exact probability that two d-dimensional probabilistic point sets are linearly separable, for any fixed d >= 2. A probabilistic point in d-space is the usual point, but with an associated (independent) probability of existence. We also show that the d-dimensional separability problem is equivalent to a (d+1)-dimensional convex hull membership problem, which asks for the probability that a query point lies inside the convex hull of n probabilistic points. Using this reduction, we improve the current best bound for the convex hull membership by a factor of n [Agarwal et al., ESA, 2014]. In addition, our algorithms can handle \"input degeneracies\" in which more than k+1 points may lie on a k-dimensional subspace, thus resolving an open problem in [Agarwal et al., ESA, 2014]. Finally, we prove lower bounds for the separability problem via a reduction from the k-SUM problem, which shows in particular that our O(n^2) algorithms for 2-dimensional separability and 3-dimensional convex hull membership are nearly optimal.","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"25 1","pages":"38:1-38:16"},"PeriodicalIF":0.4000,"publicationDate":"2016-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v8i2a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 23

Abstract

We describe an O(n^d) time algorithm for computing the exact probability that two d-dimensional probabilistic point sets are linearly separable, for any fixed d >= 2. A probabilistic point in d-space is the usual point, but with an associated (independent) probability of existence. We also show that the d-dimensional separability problem is equivalent to a (d+1)-dimensional convex hull membership problem, which asks for the probability that a query point lies inside the convex hull of n probabilistic points. Using this reduction, we improve the current best bound for the convex hull membership by a factor of n [Agarwal et al., ESA, 2014]. In addition, our algorithms can handle "input degeneracies" in which more than k+1 points may lie on a k-dimensional subspace, thus resolving an open problem in [Agarwal et al., ESA, 2014]. Finally, we prove lower bounds for the separability problem via a reduction from the k-SUM problem, which shows in particular that our O(n^2) algorithms for 2-dimensional separability and 3-dimensional convex hull membership are nearly optimal.
概率点集的超平面可分性和凸性
我们描述了一个O(n^d)时间算法,用于计算两个d维概率点集线性可分的精确概率,对于任何固定的d >= 2。d空间中的概率点是通常的点,但具有相关的(独立的)存在概率。我们还证明了d维可分性问题等价于(d+1)维凸包隶属性问题,该问题要求查询点位于n个概率点的凸包内的概率。通过这种约简,我们将凸包隶属度的当前最佳界提高了n倍[Agarwal等人,ESA, 2014]。此外,我们的算法可以处理“输入退化”,其中超过k+1个点可能位于k维子空间,从而解决了[Agarwal et al., ESA, 2014]中的一个开放问题。最后,我们通过k-SUM问题的简化证明了可分性问题的下界,这特别表明我们的二维可分性和三维凸壳隶属度的O(n^2)算法几乎是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信