A 2x2 Broadband Dual-Polarized Antenna Array using AiP Techniques for 5G mmWave Beamforming Systems

Wen‐Chun Hsiao, Hong-Sheng Huang, Cheng-Yu Ho, Sheng-Chi Hsieh, Chen-Chao Wang
{"title":"A 2x2 Broadband Dual-Polarized Antenna Array using AiP Techniques for 5G mmWave Beamforming Systems","authors":"Wen‐Chun Hsiao, Hong-Sheng Huang, Cheng-Yu Ho, Sheng-Chi Hsieh, Chen-Chao Wang","doi":"10.1109/IMPACT56280.2022.9966692","DOIUrl":null,"url":null,"abstract":"This paper discusses a 2x2 broadband dual-polarized antenna array on the 4+2+4 cost-effective multilayer organic substrates with size of 13 x 13 x 0.87 mm3. Each antenna element consists of one driven patch, one stacked patch, and four parasitic elements. This work focuses on simulating and analyzing the effect of stacking ratio of driven patch and stacked patch on operating bandwidth, and adding parasitic elements to expand the bandwidth, which achieves broadband performance on a thin and cost-effective substrate. In a single antenna element, the simulated return loss of over 10dB is achieved a frequency range from 24.60 to 29.65 GHz and the realized antenna gain is more than 5.5dBi. After that, a 2x2 antenna array is designed, which each antenna element has dual feeding ports to implement dual-polarization features. In the 24.65 to 29.65 GHz range, the simulated realized gain of array in vertical polarization and horizontal polarization is from 10.7 to 12.4 dBi. The isolation levels of port-to-port and cross-polarization are better than 18dB and 14dB in the band, respectively. Finally, the 3D beam steering is simulated in four quadrants at 27GHz, and a maximum realized gain of 11.1dBi is achieved in the beam direction (θ=28°, Φ=312°) of quadrant IV. It shows that the beamforming can work properly by controlling the phase of signal in each antenna element. The cost-effective antenna structure provides a broadband benefit to cover all the 28GHz mmWave bands of 3GPP standard (n257, n258, and n261).","PeriodicalId":13517,"journal":{"name":"Impact","volume":"115 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Impact","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT56280.2022.9966692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses a 2x2 broadband dual-polarized antenna array on the 4+2+4 cost-effective multilayer organic substrates with size of 13 x 13 x 0.87 mm3. Each antenna element consists of one driven patch, one stacked patch, and four parasitic elements. This work focuses on simulating and analyzing the effect of stacking ratio of driven patch and stacked patch on operating bandwidth, and adding parasitic elements to expand the bandwidth, which achieves broadband performance on a thin and cost-effective substrate. In a single antenna element, the simulated return loss of over 10dB is achieved a frequency range from 24.60 to 29.65 GHz and the realized antenna gain is more than 5.5dBi. After that, a 2x2 antenna array is designed, which each antenna element has dual feeding ports to implement dual-polarization features. In the 24.65 to 29.65 GHz range, the simulated realized gain of array in vertical polarization and horizontal polarization is from 10.7 to 12.4 dBi. The isolation levels of port-to-port and cross-polarization are better than 18dB and 14dB in the band, respectively. Finally, the 3D beam steering is simulated in four quadrants at 27GHz, and a maximum realized gain of 11.1dBi is achieved in the beam direction (θ=28°, Φ=312°) of quadrant IV. It shows that the beamforming can work properly by controlling the phase of signal in each antenna element. The cost-effective antenna structure provides a broadband benefit to cover all the 28GHz mmWave bands of 3GPP standard (n257, n258, and n261).
5G毫米波波束形成系统中采用AiP技术的2x2宽带双极化天线阵列
本文讨论了尺寸为13 × 13 × 0.87 mm3的4+2+4多层有机基板上的2x2宽带双极化天线阵列。每个天线元件由一个驱动贴片、一个堆叠贴片和四个寄生元件组成。本工作着重模拟分析驱动贴片和堆叠贴片的堆叠比对工作带宽的影响,并通过添加寄生元件来扩展带宽,从而在薄而经济的衬底上实现宽带性能。在单天线单元中,在24.60 ~ 29.65 GHz频率范围内实现了10dB以上的模拟回波损耗,实现了5.5dBi以上的天线增益。然后设计2x2天线阵列,每个天线单元具有双馈电口,实现双极化特性。在24.65 ~ 29.65 GHz范围内,阵列垂直极化和水平极化的仿真实现增益为10.7 ~ 12.4 dBi。端口对端口和交叉极化的隔离水平分别优于18dB和14dB。最后,在27GHz的4个象限进行了三维波束控制仿真,在第四象限波束方向(θ=28°,Φ=312°)实现了最大增益11.1dBi。结果表明,通过控制各天线单元信号的相位,波束形成可以正常工作。具有成本效益的天线结构提供宽带优势,覆盖3GPP标准(n257, n258和n261)的所有28GHz毫米波频段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信