A UNIFIED FRAMEWORK FOR WATER SURFACE EXTRACTION AND CHANGE PREDICTION IN IMAGERY DATA STREAMS

Tam Thanh Nguyen, Toan Thanh Nguyen, C. T. Phan, Quoc Viet Hung Nguyen
{"title":"A UNIFIED FRAMEWORK FOR WATER SURFACE EXTRACTION AND CHANGE PREDICTION IN IMAGERY DATA STREAMS","authors":"Tam Thanh Nguyen, Toan Thanh Nguyen, C. T. Phan, Quoc Viet Hung Nguyen","doi":"10.15625/1813-9663/38/1/16092","DOIUrl":null,"url":null,"abstract":"Changes in surface water might result in natural disasters such as floods, water shortages, landslides, waterborne diseases, which lead to loss of lives. Timely extracting for surface water and predicting its movement is essential for planning activities and decision-making processes. Most existing works on extracting water surface using satellite images focus on static spectral images and ignore the temporal evolution of data in streams, leading to less accuracy and lack of prediction power. Although some works realize that modeling temporal information of satellite signals could boost the forecasting capability on environmental changes, most of them only focus on prediction tasks independently and separately from the extraction task. In this paper, we propose a unified framework for water extraction and change prediction (WECP) built on top of imagery data streams, which are free to access from orbiting satellites, to locate water surface and predict its changes over time. Our framework is evaluated on Landsat 8 data due to its high spatial resolution. Empirical evaluations on real imagery datasets of different landscapes reveal that our framework is robust in extracting and capturing spatio-temporal changes in the water surface.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/38/1/16092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in surface water might result in natural disasters such as floods, water shortages, landslides, waterborne diseases, which lead to loss of lives. Timely extracting for surface water and predicting its movement is essential for planning activities and decision-making processes. Most existing works on extracting water surface using satellite images focus on static spectral images and ignore the temporal evolution of data in streams, leading to less accuracy and lack of prediction power. Although some works realize that modeling temporal information of satellite signals could boost the forecasting capability on environmental changes, most of them only focus on prediction tasks independently and separately from the extraction task. In this paper, we propose a unified framework for water extraction and change prediction (WECP) built on top of imagery data streams, which are free to access from orbiting satellites, to locate water surface and predict its changes over time. Our framework is evaluated on Landsat 8 data due to its high spatial resolution. Empirical evaluations on real imagery datasets of different landscapes reveal that our framework is robust in extracting and capturing spatio-temporal changes in the water surface.
图像数据流中水面提取与变化预测的统一框架
地表水的变化可能导致洪水、缺水、滑坡、水传播疾病等自然灾害,从而造成生命损失。及时提取地表水并预测其运动对规划活动和决策过程至关重要。现有的利用卫星图像提取水面的研究大多集中在静态光谱图像上,忽略了河流中数据的时间演变,导致精度较低,缺乏预测能力。虽然一些研究认识到对卫星信号的时间信息进行建模可以提高对环境变化的预测能力,但大多数研究都是将预测任务与提取任务分开进行独立的研究。在本文中,我们提出了一个基于图像数据流的水提取和变化预测(WECP)的统一框架,该框架可以免费从轨道卫星获取,以定位水面并预测其随时间的变化。我们的框架是在Landsat 8数据上进行评估的,因为它具有高空间分辨率。对不同景观的真实图像数据集的经验评估表明,我们的框架在提取和捕获水面时空变化方面具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信