Inline coherent imaging of laser micromachining

P. Webster, Joe X. Z. Yu, Ben Y. C. Leung, Logan G. Wright, K. Mortimer, J. Fraser
{"title":"Inline coherent imaging of laser micromachining","authors":"P. Webster, Joe X. Z. Yu, Ben Y. C. Leung, Logan G. Wright, K. Mortimer, J. Fraser","doi":"10.1109/ISOT.2010.5687305","DOIUrl":null,"url":null,"abstract":"In applications ranging from noncontact microsurgery to semiconductor blind hole drilling, precise depth control of laser processing is a major challenge. Even expensive a priori characterization cannot compensate for material heterogeneity and stochasticity inherent to the ablation process. Here we use in situ depth imaging to guide the machining process in real time. W e image along the machining beam axis at high speeds (up to 300 kHz) to provide real-time feedback, even in high aspect ratio holes. The in situ metrology is based on coherent imaging (similar to optical coherence tomography) and is practical for a wide-range of light sources and machining processes (e.g., thermal cutting or ultrafast nonlinear ablation). Coherent imaging has a high dynamic range (> 60 dB) and strongly rejects incoherent signals allowing weak features to be observed in the presence of intense machining light and plasmas. High axial resolution (∼10 μm) requires broadband imaging light but the center wavelength can be chosen appropriate to the application. Infrared light (wavelength: 1320 ± 35 nm) allows simultaneous monitoring of both surface and subsurface interfaces in non-absorbing materials like tissue and semiconductors. By contrast, silicon based detector technology can be used with near infrared imaging light (805 ± 25 nm) enabling high speed acquisition and low cost implementation.","PeriodicalId":91154,"journal":{"name":"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)","volume":"125 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOT.2010.5687305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In applications ranging from noncontact microsurgery to semiconductor blind hole drilling, precise depth control of laser processing is a major challenge. Even expensive a priori characterization cannot compensate for material heterogeneity and stochasticity inherent to the ablation process. Here we use in situ depth imaging to guide the machining process in real time. W e image along the machining beam axis at high speeds (up to 300 kHz) to provide real-time feedback, even in high aspect ratio holes. The in situ metrology is based on coherent imaging (similar to optical coherence tomography) and is practical for a wide-range of light sources and machining processes (e.g., thermal cutting or ultrafast nonlinear ablation). Coherent imaging has a high dynamic range (> 60 dB) and strongly rejects incoherent signals allowing weak features to be observed in the presence of intense machining light and plasmas. High axial resolution (∼10 μm) requires broadband imaging light but the center wavelength can be chosen appropriate to the application. Infrared light (wavelength: 1320 ± 35 nm) allows simultaneous monitoring of both surface and subsurface interfaces in non-absorbing materials like tissue and semiconductors. By contrast, silicon based detector technology can be used with near infrared imaging light (805 ± 25 nm) enabling high speed acquisition and low cost implementation.
激光微加工的在线相干成像
从非接触式显微手术到半导体盲孔钻孔,激光加工的精确深度控制是一个重大挑战。即使昂贵的先验表征也无法补偿烧蚀过程中固有的材料异质性和随机性。本文采用原位深度成像技术实时指导加工过程。在高速(高达300 kHz)下沿加工光束轴的W e图像,即使在高纵横比孔中也能提供实时反馈。原位测量基于相干成像(类似于光学相干层析成像),适用于广泛的光源和加工过程(例如,热切割或超快非线性烧蚀)。相干成像具有高动态范围(> 60 dB),并且强烈地拒绝非相干信号,允许在强加工光和等离子体存在下观察到弱特征。高轴向分辨率(~ 10 μm)需要宽带成像光,但可以根据应用选择合适的中心波长。红外光(波长:1320±35 nm)允许同时监测非吸收材料(如组织和半导体)的表面和地下界面。相比之下,硅基探测器技术可以与近红外成像光(805±25 nm)一起使用,实现高速采集和低成本实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信