{"title":"Investigation of flocculant influence on the kinetic parameters of copper recovery in aqueous solution with metal zinc","authors":"A. Kolesnikov, I. Tsyganova","doi":"10.17073/0021-3438-2019-3-4-11","DOIUrl":null,"url":null,"abstract":"We studied a number of models for the description of copper reduction by fine zinc powder in aqueous solutions. The experimentswere carried out in devices with a magnetic stirrer at mixing speeds of 40–150 rpm and temperatures of 15–50 °C. We investigated the influence exerted on the process by macromolecular flocculants such as non-ionic magnafloc 333, cationic besflok 6645 and anionic besfloc 4034. Under industrial conditions, these flocculants are used at the hydrolytic solution purification stage and then they are fed to cementing purification together with the clarified solution. Aqueous flocculant solutions of 2,5 g/l containing 2–4 g/l of zinc dust and 50–200 mg/l of flocculant were used in the experiments. Copper content in the initial and final solutions was quantitatively determined by spectrophotometric analysis with the preliminary copper transfer to the ammonia complex. Experiment duration varied from 1 to 8 min. The degree of copper reduction from solutions was 10–90 %. It was found that at low mixing rates the process kinetics can be described by the kinetic equation of the first order. At high speeds, the kinetics of the studied heterogeneous reactionwith added flocculants is more adequately described by the velocity change equation as a square root of the process duration. It wasshown that the highest constant of cementation rate is observed in experiments without the addition of surfactants. Anionic flocculant slows down the cementation process to a lesser extent than cationic one, which is consistent with the theory of electrochemical processes and shows that the discharge of copper cations under these conditions limits the cementation process. Regularities revealed in the studied process remain as temperature increases. It was noted that the addition of high-molecular substances with a relative molecular mass of 20 million in an amount of 50–200 mg/l inhibit the cementation process. This fact must be taken into account in industrial conditions where cementing purification from copper and other impurities is carried out from flocculant-containing solutions.","PeriodicalId":14523,"journal":{"name":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0021-3438-2019-3-4-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We studied a number of models for the description of copper reduction by fine zinc powder in aqueous solutions. The experimentswere carried out in devices with a magnetic stirrer at mixing speeds of 40–150 rpm and temperatures of 15–50 °C. We investigated the influence exerted on the process by macromolecular flocculants such as non-ionic magnafloc 333, cationic besflok 6645 and anionic besfloc 4034. Under industrial conditions, these flocculants are used at the hydrolytic solution purification stage and then they are fed to cementing purification together with the clarified solution. Aqueous flocculant solutions of 2,5 g/l containing 2–4 g/l of zinc dust and 50–200 mg/l of flocculant were used in the experiments. Copper content in the initial and final solutions was quantitatively determined by spectrophotometric analysis with the preliminary copper transfer to the ammonia complex. Experiment duration varied from 1 to 8 min. The degree of copper reduction from solutions was 10–90 %. It was found that at low mixing rates the process kinetics can be described by the kinetic equation of the first order. At high speeds, the kinetics of the studied heterogeneous reactionwith added flocculants is more adequately described by the velocity change equation as a square root of the process duration. It wasshown that the highest constant of cementation rate is observed in experiments without the addition of surfactants. Anionic flocculant slows down the cementation process to a lesser extent than cationic one, which is consistent with the theory of electrochemical processes and shows that the discharge of copper cations under these conditions limits the cementation process. Regularities revealed in the studied process remain as temperature increases. It was noted that the addition of high-molecular substances with a relative molecular mass of 20 million in an amount of 50–200 mg/l inhibit the cementation process. This fact must be taken into account in industrial conditions where cementing purification from copper and other impurities is carried out from flocculant-containing solutions.