C. Bosomworth, M. Spiryagin, S. Alahakoon, C. Cole
{"title":"MODELLING RAIL THERMAL DIFFERENTIALS DUE TO BENDING AND DEFECTS","authors":"C. Bosomworth, M. Spiryagin, S. Alahakoon, C. Cole","doi":"10.3846/TRANSPORT.2021.14574","DOIUrl":null,"url":null,"abstract":"Rail foot flaws have the potential to cause broken rails that can lead to derailment. This is not only an extremely costly issue for a rail operator in terms of damage to rolling stock, but has significant flow-on effects for network downtime and a safe working environment. In Australia, heavy haul operators run up to 42.5 t axle loads with trains in excess of 200 wagons and these long trains produce very large cyclic rail stresses. The early detection of foot flaws before a broken rail occurs is of high importance and there are currently no proven techniques for detecting rail foot flaws on trains at normal running speeds. This paper shall focus on the potential use of thermography as a detection technique and begin investigating the components of heat transfer in the rail to determine the viability of thermography for detecting rail foot flaws. The paper commences with an introduction to the sources of heat generation in the rail and modelling approaches for the effects of bending, natural environmental factors and transverse defects. It concludes with two theoretical case studies on heat generated due to these sources and discusses how they may inform the development of a practical thermography detection methodology.","PeriodicalId":23260,"journal":{"name":"Transport","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/TRANSPORT.2021.14574","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rail foot flaws have the potential to cause broken rails that can lead to derailment. This is not only an extremely costly issue for a rail operator in terms of damage to rolling stock, but has significant flow-on effects for network downtime and a safe working environment. In Australia, heavy haul operators run up to 42.5 t axle loads with trains in excess of 200 wagons and these long trains produce very large cyclic rail stresses. The early detection of foot flaws before a broken rail occurs is of high importance and there are currently no proven techniques for detecting rail foot flaws on trains at normal running speeds. This paper shall focus on the potential use of thermography as a detection technique and begin investigating the components of heat transfer in the rail to determine the viability of thermography for detecting rail foot flaws. The paper commences with an introduction to the sources of heat generation in the rail and modelling approaches for the effects of bending, natural environmental factors and transverse defects. It concludes with two theoretical case studies on heat generated due to these sources and discusses how they may inform the development of a practical thermography detection methodology.
期刊介绍:
At present, transport is one of the key branches playing a crucial role in the development of economy. Reliable and properly organized transport services are required for a professional performance of industry, construction and agriculture. The public mood and efficiency of work also largely depend on the valuable functions of a carefully chosen transport system. A steady increase in transportation is accompanied by growing demands for a higher quality of transport services and optimum efficiency of transport performance. Currently, joint efforts taken by the transport experts and governing institutions of the country are required to develop and enhance the performance of the national transport system conducting theoretical and empirical research.
TRANSPORT is an international peer-reviewed journal covering main aspects of transport and providing a source of information for the engineer and the applied scientist.
The journal TRANSPORT publishes articles in the fields of:
transport policy;
fundamentals of the transport system;
technology for carrying passengers and freight using road, railway, inland waterways, sea and air transport;
technology for multimodal transportation and logistics;
loading technology;
roads, railways;
airports, ports, transport terminals;
traffic safety and environment protection;
design, manufacture and exploitation of motor vehicles;
pipeline transport;
transport energetics;
fuels, lubricants and maintenance materials;
teamwork of customs and transport;
transport information technologies;
transport economics and management;
transport standards;
transport educology and history, etc.