DISCONTINUOUS RIEMANN BOUNDARY PROBLEM IN WEIGHTED SPACES

V. G. Petrosyan
{"title":"DISCONTINUOUS RIEMANN BOUNDARY PROBLEM IN WEIGHTED SPACES","authors":"V. G. Petrosyan","doi":"10.46991/pysu:a/2017.51.1.038","DOIUrl":null,"url":null,"abstract":"The Riemann boundary problem in weighted spaces $L^1(\\rho) $ on $T = {t; |t| = 1}, $ where $\\rho(t) =|t -t_0|^\\alpha, t_0 \\in T$ and $\\alpha > -1$, is investigated. The problem is to find analytic functions $\\Phi^+(z)$ and $\\Phi^-(z)$, $\\Phi^-(\\infty)= 0$ defined on the interior and exterior domains of $T$ respectively, such that: $\\lim_\\limits{ r\\rightarrow 1-0} ||\\Phi^+(rt)-a(t)\\Phi^-(r^1t)- f (t)||_{L^1(\\rho) }= 0,$ where $f\\in L^1(\\rho),  a(t) \\in H_0(T;t_1, t_2,...,t_m)$. The article gives necessary and sufficient conditions for solvability of the problem and with explicit form of thr solutions.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2017.51.1.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Riemann boundary problem in weighted spaces $L^1(\rho) $ on $T = {t; |t| = 1}, $ where $\rho(t) =|t -t_0|^\alpha, t_0 \in T$ and $\alpha > -1$, is investigated. The problem is to find analytic functions $\Phi^+(z)$ and $\Phi^-(z)$, $\Phi^-(\infty)= 0$ defined on the interior and exterior domains of $T$ respectively, such that: $\lim_\limits{ r\rightarrow 1-0} ||\Phi^+(rt)-a(t)\Phi^-(r^1t)- f (t)||_{L^1(\rho) }= 0,$ where $f\in L^1(\rho),  a(t) \in H_0(T;t_1, t_2,...,t_m)$. The article gives necessary and sufficient conditions for solvability of the problem and with explicit form of thr solutions.
加权空间中的不连续Riemann边界问题
研究了$T = {t; |t| = 1}, $ ($\rho(t) =|t -t_0|^\alpha, t_0 \in T$)和$\alpha > -1$ ()上加权空间$L^1(\rho) $中的Riemann边界问题。问题是找到解析函数$\Phi^+(z)$和$\Phi^-(z)$, $\Phi^-(\infty)= 0$分别定义在$T$的内部和外部域上,这样:$\lim_\limits{ r\rightarrow 1-0} ||\Phi^+(rt)-a(t)\Phi^-(r^1t)- f (t)||_{L^1(\rho) }= 0,$其中$f\in L^1(\rho),  a(t) \in H_0(T;t_1, t_2,...,t_m)$。给出了问题可解的充分必要条件,并给出了解的显式形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信