Gray Level Co-occurrence Matrix with Binary Robust Invariant Scalable Keypoints for Detecting Copy Move Forgeries

Q3 Computer Science
Amarpreet Singh, Sanjogdeep Singh
{"title":"Gray Level Co-occurrence Matrix with Binary Robust Invariant Scalable Keypoints for Detecting Copy Move Forgeries","authors":"Amarpreet Singh, Sanjogdeep Singh","doi":"10.18178/joig.11.1.82-90","DOIUrl":null,"url":null,"abstract":"With advancement in technology, especially in imaging field, digital image forgery has increased a lot nowadays. In order to counter this problem, many forgery detection techniques have been developed from time to time. For rapid and accurate detection of forged image, a novel hybrid technique is used in this research work that implements Gray Level Co-occurrence Matrix (GLCM) along with Binary Robust Invariant Scalable Keypoints (BRISK). GLCM significantly extracts key attributes from an image efficiently which will help to increase the detection accuracy. BRISK is known to be one of the 3 fastest modes of detection which will increase the execution speed of GLCM. BRISK even processes scaled and rotated images. Then the Principal Component Analysis (PCA) algorithm is applied in the final phase of detection will remove any unrequited element from the scene and highlights the concerned forged area.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.1.82-90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

With advancement in technology, especially in imaging field, digital image forgery has increased a lot nowadays. In order to counter this problem, many forgery detection techniques have been developed from time to time. For rapid and accurate detection of forged image, a novel hybrid technique is used in this research work that implements Gray Level Co-occurrence Matrix (GLCM) along with Binary Robust Invariant Scalable Keypoints (BRISK). GLCM significantly extracts key attributes from an image efficiently which will help to increase the detection accuracy. BRISK is known to be one of the 3 fastest modes of detection which will increase the execution speed of GLCM. BRISK even processes scaled and rotated images. Then the Principal Component Analysis (PCA) algorithm is applied in the final phase of detection will remove any unrequited element from the scene and highlights the concerned forged area.
基于二值鲁棒不变可伸缩关键点的灰度共生矩阵检测复制移动伪造
随着技术的进步,尤其是成像技术的进步,数字图像伪造技术日益增多。为了解决这个问题,许多伪造检测技术不时被开发出来。为了快速准确地检测伪造图像,本研究采用了一种新的混合技术,将灰度共生矩阵(GLCM)与二值鲁棒不变可扩展关键点(BRISK)结合使用。GLCM能够有效地从图像中提取关键属性,有助于提高检测精度。BRISK是已知的三种最快的检测模式之一,它将提高GLCM的执行速度。BRISK甚至处理缩放和旋转的图像。然后在检测的最后阶段应用主成分分析(PCA)算法,从场景中去除任何不报偿的元素,并突出显示相关的伪造区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信