Simultaneous p-adic Diophantine approximation

IF 0.8 3区 数学 Q3 MATHEMATICS
V. Beresnevich, J. Levesley, Benjamin C. Ward
{"title":"Simultaneous p-adic Diophantine approximation","authors":"V. Beresnevich, J. Levesley, Benjamin C. Ward","doi":"10.1017/S0305004122000470","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to develop the theory of weighted Diophantine approximation of rational numbers to p-adic numbers. Firstly, we establish complete analogues of Khintchine’s theorem, the Duffin–Schaeffer theorem and the Jarník–Besicovitch theorem for ‘weighted’ simultaneous Diophantine approximation in the p-adic case. Secondly, we obtain a lower bound for the Hausdorff dimension of weighted simultaneously approximable points lying on p-adic manifolds. This is valid for very general classes of curves and manifolds and have natural constraints on the exponents of approximation. The key tools we use in our proofs are the Mass Transference Principle, including its recent extension due to Wang and Wu in 2019, and a Zero-One law for weighted p-adic approximations established in this paper.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"8 1","pages":"13 - 50"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004122000470","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract The aim of this paper is to develop the theory of weighted Diophantine approximation of rational numbers to p-adic numbers. Firstly, we establish complete analogues of Khintchine’s theorem, the Duffin–Schaeffer theorem and the Jarník–Besicovitch theorem for ‘weighted’ simultaneous Diophantine approximation in the p-adic case. Secondly, we obtain a lower bound for the Hausdorff dimension of weighted simultaneously approximable points lying on p-adic manifolds. This is valid for very general classes of curves and manifolds and have natural constraints on the exponents of approximation. The key tools we use in our proofs are the Mass Transference Principle, including its recent extension due to Wang and Wu in 2019, and a Zero-One law for weighted p-adic approximations established in this paper.
同时p进丢番图近似
摘要本文的目的是发展有理数对p进数的加权丢番图逼近理论。首先,我们建立了p进情况下“加权”同时Diophantine近似的Khintchine定理、Duffin-Schaeffer定理和Jarník-Besicovitch定理的完全类似。其次,我们得到了p进流形上加权同时逼近点的Hausdorff维数的下界。这对非常一般的曲线和流形是有效的,并且对近似的指数有自然的约束。我们在证明中使用的关键工具是质量传递原理,包括最近由Wang和Wu在2019年提出的扩展,以及本文中建立的加权p进近似的zero - 1定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信