A Review of the Petroleum Hydrocarbons Contamination of Soil, Water and Air and the Available Remediation Techniques, Taking into Consideration the Sustainable Development Goals
{"title":"A Review of the Petroleum Hydrocarbons Contamination of Soil, Water and Air and the Available Remediation Techniques, Taking into Consideration the Sustainable Development Goals","authors":"A. Elijah","doi":"10.34198/ejcs.7122.97113","DOIUrl":null,"url":null,"abstract":"The emergence of several industrial activities has arguably led to hydrocarbon contamination of all aspects of the environment. The resultant effect of the increased dependence on crude oil is the hydrocarbon pollution via the exploration, transport and waste disposal. Crude oil is a complex mixture of aliphatic, aromatic and heterocyclic compounds. The impact of the crude oil spills, pesticides, fossil fuels and other organic pollutants, which majorly contains these hydrocarbons is that the natural heavy metal content of the soil is drastically rising, resulting in high concentration of heavy metals, thereby limiting the microbe’s activity, rendering it unsuitable for degradation and reduced effectiveness. This menace has hereby brought the dire need for adequate environmental remediation technique, putting into consideration the achievement of the Sustainable Development Goals (SDGs’). Variety of techniques exist for remediation depending on the media (e.g. air, water, or soil) and contaminant (e.g. heavy metals, PCB etc.). Some of the techniques adopted in the last several decades are physical/mechanical, chemical or biochemical remediation methods.","PeriodicalId":11449,"journal":{"name":"Earthline Journal of Chemical Sciences","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthline Journal of Chemical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34198/ejcs.7122.97113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The emergence of several industrial activities has arguably led to hydrocarbon contamination of all aspects of the environment. The resultant effect of the increased dependence on crude oil is the hydrocarbon pollution via the exploration, transport and waste disposal. Crude oil is a complex mixture of aliphatic, aromatic and heterocyclic compounds. The impact of the crude oil spills, pesticides, fossil fuels and other organic pollutants, which majorly contains these hydrocarbons is that the natural heavy metal content of the soil is drastically rising, resulting in high concentration of heavy metals, thereby limiting the microbe’s activity, rendering it unsuitable for degradation and reduced effectiveness. This menace has hereby brought the dire need for adequate environmental remediation technique, putting into consideration the achievement of the Sustainable Development Goals (SDGs’). Variety of techniques exist for remediation depending on the media (e.g. air, water, or soil) and contaminant (e.g. heavy metals, PCB etc.). Some of the techniques adopted in the last several decades are physical/mechanical, chemical or biochemical remediation methods.