M. Palone, Giulia Romagnolo, F. Cremonini, E. Paoletto, L. Lombardo
{"title":"Palatal skeletal anchorage: multiple applications with a single appliance","authors":"M. Palone, Giulia Romagnolo, F. Cremonini, E. Paoletto, L. Lombardo","doi":"10.25259/apos_7_2023","DOIUrl":null,"url":null,"abstract":"Using a single bone-borne maxillary appliance with twofold mechanics, that is, rapid palatal expander and nonfrictional distalizing appliance (Pendulum) is a valuable option to treat young-adult patients with poor compliance. In this particular case, the same appliance was used to disinclude 2.3, eliminating reaction forces on the arch. Therefore, the first expansive phase was followed by the distalizing phase. After enough space was obtained for the recovery of tooth 2.3, a triple-looped titanium-molybdenum alloy (TMA) spring was used to perform canine orthodontic traction. The core concept is that digital planning and optimal positioning of two palatal mini-screws can ensure a bicortical anchorage which, in turn, enabled to tolerate the different orthodontic phases. As a matter of fact, a tooth-bone-borne anchorage was followed by a pure bone-borne anchorage with no lost of stability.","PeriodicalId":42593,"journal":{"name":"APOS Trends in Orthodontics","volume":"10 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APOS Trends in Orthodontics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25259/apos_7_2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Using a single bone-borne maxillary appliance with twofold mechanics, that is, rapid palatal expander and nonfrictional distalizing appliance (Pendulum) is a valuable option to treat young-adult patients with poor compliance. In this particular case, the same appliance was used to disinclude 2.3, eliminating reaction forces on the arch. Therefore, the first expansive phase was followed by the distalizing phase. After enough space was obtained for the recovery of tooth 2.3, a triple-looped titanium-molybdenum alloy (TMA) spring was used to perform canine orthodontic traction. The core concept is that digital planning and optimal positioning of two palatal mini-screws can ensure a bicortical anchorage which, in turn, enabled to tolerate the different orthodontic phases. As a matter of fact, a tooth-bone-borne anchorage was followed by a pure bone-borne anchorage with no lost of stability.