{"title":"General Theory and Tools for Proving Algorithms in Nominative Data Systems","authors":"Adrian Jaszczak","doi":"10.2478/forma-2020-0024","DOIUrl":null,"url":null,"abstract":"Summary In this paper we introduce some new definitions for sequences of operations and extract general theorems about properties of iterative algorithms encoded in nominative data language [20] in the Mizar system [3], [1] in order to simplify the process of proving algorithms in the future. This paper continues verification of algorithms [10], [13], [12], [14] written in terms of simple-named complex-valued nominative data [6], [8], [18], [11], [15], [16]. The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and postconditions [17], [19], [7], [5].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2020-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Summary In this paper we introduce some new definitions for sequences of operations and extract general theorems about properties of iterative algorithms encoded in nominative data language [20] in the Mizar system [3], [1] in order to simplify the process of proving algorithms in the future. This paper continues verification of algorithms [10], [13], [12], [14] written in terms of simple-named complex-valued nominative data [6], [8], [18], [11], [15], [16]. The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and postconditions [17], [19], [7], [5].
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.