A posteriori error estimate for a WG method of H(curl)-elliptic problems

IF 3.8 2区 数学 Q1 MATHEMATICS
J. Peng, Yingying Xie, L. Zhong
{"title":"A posteriori error estimate for a WG method of H(curl)-elliptic problems","authors":"J. Peng, Yingying Xie, L. Zhong","doi":"10.1515/jnma-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a posteriori error estimate for the weak Galerkin (WG) finite element method used to solve H(curl)-elliptic problems. Firstly, we introduce a WG method for solving H(curl)-elliptic problems and a corresponding residual type error estimator without a stabilization term. Secondly, we establish the reliability of the error estimator by demonstrating that the stabilization term is controlled by the error estimator. We also evaluate the efficiency of the error estimator using standard bubble functions. Finally, we present some numerical results to show the performances of the error estimator in both uniform and adaptive meshes.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2023-0014","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper presents a posteriori error estimate for the weak Galerkin (WG) finite element method used to solve H(curl)-elliptic problems. Firstly, we introduce a WG method for solving H(curl)-elliptic problems and a corresponding residual type error estimator without a stabilization term. Secondly, we establish the reliability of the error estimator by demonstrating that the stabilization term is controlled by the error estimator. We also evaluate the efficiency of the error estimator using standard bubble functions. Finally, we present some numerical results to show the performances of the error estimator in both uniform and adaptive meshes.
H(旋度)-椭圆问题的WG方法的后验误差估计
摘要本文给出了求解H(旋度)-椭圆问题的弱Galerkin (WG)有限元法的后验误差估计。首先,引入求解H(旋度)椭圆型问题的WG方法和相应的不带镇定项的残差型误差估计量。其次,通过证明镇定项由误差估计量控制,建立了误差估计量的可靠性。我们也用标准泡函数来评估误差估计器的效率。最后,我们给出了一些数值结果来证明误差估计器在均匀网格和自适应网格中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信