{"title":"Simulating Boundary Fields of Arbitrary-shaped Objects in a Reverberation Chamber","authors":"Qian Xu, Kai Chen, Xueqi Shen, Yi Huan","doi":"10.47037/2021.aces.j.36092","DOIUrl":null,"url":null,"abstract":"─ In a reverberation chamber, analytical solutions exist in very limited scenarios for the distribution of the boundary fields. For arbitrary-shaped objects, analytical solutions may not exist. To solve this problem, a general numerical method is proposed to obtain the mean field distribution near arbitrary-shaped objects in a random diffused-wave environment. The proposed method combines the full-wave method and the Monte-Carlo method; the numerical results are validated and compared with that from analytical equations. The proposed method can be applied to arbitrary-shaped objects with general material properties. Index Terms ─ Boundary fields, Monte-Carlo simulation, plane wave model, reverberation chamber.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.36092","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
─ In a reverberation chamber, analytical solutions exist in very limited scenarios for the distribution of the boundary fields. For arbitrary-shaped objects, analytical solutions may not exist. To solve this problem, a general numerical method is proposed to obtain the mean field distribution near arbitrary-shaped objects in a random diffused-wave environment. The proposed method combines the full-wave method and the Monte-Carlo method; the numerical results are validated and compared with that from analytical equations. The proposed method can be applied to arbitrary-shaped objects with general material properties. Index Terms ─ Boundary fields, Monte-Carlo simulation, plane wave model, reverberation chamber.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.