Toward the Evaluation of Educational Videos using Bayesian Knowledge Tracing and Big Data

Zachary MacHardy, Z. Pardos
{"title":"Toward the Evaluation of Educational Videos using Bayesian Knowledge Tracing and Big Data","authors":"Zachary MacHardy, Z. Pardos","doi":"10.1145/2724660.2728690","DOIUrl":null,"url":null,"abstract":"Along with the advent of MOOCs and other online learning platforms such as Khan Academy, the role of online education has continued to grow in relation to that of traditional on-campus instruction. Rather than tackle the problem of evaluating large educational units such as entire online courses, this paper approaches a smaller problem: exploring a framework for evaluating more granular educational units, in this case, short educational videos. We have chosen to leverage an adaptation of traditional Bayesian Knowledge Tracing (BKT), intended to incorporate the usage of video content in addition to assessment activity. By exploring the change in predictive error when alternately including or omitting video activity, we suggest a metric for determining the relevance of videos to associated assessments. To validate our hypothesis and demonstrate the application of our proposed methods we use data obtained from the popular Khan Academy website.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2728690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Along with the advent of MOOCs and other online learning platforms such as Khan Academy, the role of online education has continued to grow in relation to that of traditional on-campus instruction. Rather than tackle the problem of evaluating large educational units such as entire online courses, this paper approaches a smaller problem: exploring a framework for evaluating more granular educational units, in this case, short educational videos. We have chosen to leverage an adaptation of traditional Bayesian Knowledge Tracing (BKT), intended to incorporate the usage of video content in addition to assessment activity. By exploring the change in predictive error when alternately including or omitting video activity, we suggest a metric for determining the relevance of videos to associated assessments. To validate our hypothesis and demonstrate the application of our proposed methods we use data obtained from the popular Khan Academy website.
基于贝叶斯知识追踪和大数据的教育视频评价研究
随着mooc和可汗学院(Khan Academy)等其他在线学习平台的出现,与传统的校园教学相比,在线教育的作用不断增强。本文没有解决评估大型教育单元(如整个在线课程)的问题,而是解决了一个较小的问题:探索一个评估更细粒度教育单元的框架,在这种情况下,是短教育视频。我们选择利用对传统贝叶斯知识追踪(BKT)的改编,目的是在评估活动之外结合视频内容的使用。通过探索交替包含或省略视频活动时预测误差的变化,我们提出了一种确定视频与相关评估相关性的度量。为了验证我们的假设并演示我们提出的方法的应用,我们使用了从流行的可汗学院网站上获得的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信