Moving horizon least-squares input estimation for linear discrete-time

S. Systems, Yiming Wan, T. Keviczky, M. Verhaegen
{"title":"Moving horizon least-squares input estimation for linear discrete-time","authors":"S. Systems, Yiming Wan, T. Keviczky, M. Verhaegen","doi":"10.3182/20140824-6-ZA-1003.01159","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a novel moving horizon least-squares input estimation method for linear discrete-time stochastic systems. For systems with completely unknown initial state and no unstable zeros, some existing work showed that asymptotic input reconstruction is possible in the absence of noises. However, under the same condition but with stochastic noises, most existing input estimators, which are designed to optimally deal with noises, fail to ensure asymptotic unbiasedness. In order to address this limitation for linear discrete-time stochastic systems, we characterize necessary and sufficient conditions for input observability and detectability, and propose a moving horizon least-squares input estimator. Based on the conditions for input observability and detectability, it is proved that our proposed input estimator gives an asymptotically unbiased estimate and has minimal estimation error variance over all linear asymptotically unbiased input estimators. Its effectiveness is illustrated by simulation examples involving aircraft sensor and actuator faults.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"3 1","pages":"3483-3488"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.01159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract This paper presents a novel moving horizon least-squares input estimation method for linear discrete-time stochastic systems. For systems with completely unknown initial state and no unstable zeros, some existing work showed that asymptotic input reconstruction is possible in the absence of noises. However, under the same condition but with stochastic noises, most existing input estimators, which are designed to optimally deal with noises, fail to ensure asymptotic unbiasedness. In order to address this limitation for linear discrete-time stochastic systems, we characterize necessary and sufficient conditions for input observability and detectability, and propose a moving horizon least-squares input estimator. Based on the conditions for input observability and detectability, it is proved that our proposed input estimator gives an asymptotically unbiased estimate and has minimal estimation error variance over all linear asymptotically unbiased input estimators. Its effectiveness is illustrated by simulation examples involving aircraft sensor and actuator faults.
线性离散时间的移动视界最小二乘输入估计
提出了一种新的线性离散随机系统的移动水平最小二乘输入估计方法。对于初始状态完全未知且无不稳定零的系统,已有的一些研究表明,在无噪声的情况下,渐近输入重构是可能的。然而,在相同的条件下,在随机噪声条件下,现有的大多数输入估计器都是为了最优处理噪声而设计的,不能保证渐近无偏性。为了解决线性离散随机系统的这一限制,我们刻画了输入可观察性和可检测性的充分必要条件,并提出了一个移动视界最小二乘输入估计量。基于输入可观察性和可检测性的条件,证明了我们的输入估计量给出了渐近无偏估计,并且与所有线性渐近无偏输入估计量相比,估计误差方差最小。通过飞机传感器和执行机构故障的仿真实例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信