{"title":"EXPLICIT ESTIMATION OF DERIVATIVES FROM DATA AND DIFFERENTIAL EQUATIONS BY GAUSSIAN PROCESS REGRESSION","authors":"Hongqiao Wang, Xiang Zhou","doi":"10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2021034382","DOIUrl":null,"url":null,"abstract":"In this work, we employ the Bayesian inference framework to solve the problem of estimating the solution and particularly, its derivatives, which satisfy a known differential equation, from the given noisy and scarce observations of the solution data only. To address the key issue of accuracy and robustness of derivative estimation, we use the Gaussian processes to jointly model the solution, the derivatives, and the differential equation. By regarding the linear differential equation as a linear constraint, a Gaussian process regression with constraint method (GPRC) is developed to improve the accuracy of prediction of derivatives. For nonlinear differential equations, we propose a Picard-iteration-like approximation of linearization around the Gaussian process obtained only from data so that our GPRC can be still iteratively applicable. Besides, a product of experts method is applied to ensure the initial or boundary condition is considered to further enhance the prediction accuracy of the derivatives. We present several numerical results to illustrate the advantages of our new method in comparison to the standard data-driven Gaussian process regression.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"9 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2021034382","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12
Abstract
In this work, we employ the Bayesian inference framework to solve the problem of estimating the solution and particularly, its derivatives, which satisfy a known differential equation, from the given noisy and scarce observations of the solution data only. To address the key issue of accuracy and robustness of derivative estimation, we use the Gaussian processes to jointly model the solution, the derivatives, and the differential equation. By regarding the linear differential equation as a linear constraint, a Gaussian process regression with constraint method (GPRC) is developed to improve the accuracy of prediction of derivatives. For nonlinear differential equations, we propose a Picard-iteration-like approximation of linearization around the Gaussian process obtained only from data so that our GPRC can be still iteratively applicable. Besides, a product of experts method is applied to ensure the initial or boundary condition is considered to further enhance the prediction accuracy of the derivatives. We present several numerical results to illustrate the advantages of our new method in comparison to the standard data-driven Gaussian process regression.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.