Neural Network DPD via Backpropagation through a Neural Network Model of the PA

Chance Tarver, Liwen Jiang, Aryan Sefidi, Joseph R. Cavallaro
{"title":"Neural Network DPD via Backpropagation through a Neural Network Model of the PA","authors":"Chance Tarver, Liwen Jiang, Aryan Sefidi, Joseph R. Cavallaro","doi":"10.1109/IEEECONF44664.2019.9048910","DOIUrl":null,"url":null,"abstract":"We demonstrate digital predistortion (DPD) using a novel, neural-network (NN) method to combat the nonlinearities in power amplifiers (PAs), which limit the power efficiency of mobile devices, increase the error vector magnitude, and cause inadequate spectral containment. DPD is commonly done with polynomial-based methods that use an indirect-learning architecture (ILA) which can be computationally intensive, especially for mobile devices, and overly sensitive to noise. Our approach using NNs avoids the problems associated with ILAs by first training a NN to model the PA then training a predistorter by backpropagating through the PA NN model. The NN DPD effectively learns the unique PA distortions, which may not easily fit a polynomial-based model, and hence may offer a favorable tradeoff between computation overhead and DPD performance. We demonstrate the performance of our NN method using two different power amplifier systems and investigate the complexity tradeoffs.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"74 1","pages":"358-362"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We demonstrate digital predistortion (DPD) using a novel, neural-network (NN) method to combat the nonlinearities in power amplifiers (PAs), which limit the power efficiency of mobile devices, increase the error vector magnitude, and cause inadequate spectral containment. DPD is commonly done with polynomial-based methods that use an indirect-learning architecture (ILA) which can be computationally intensive, especially for mobile devices, and overly sensitive to noise. Our approach using NNs avoids the problems associated with ILAs by first training a NN to model the PA then training a predistorter by backpropagating through the PA NN model. The NN DPD effectively learns the unique PA distortions, which may not easily fit a polynomial-based model, and hence may offer a favorable tradeoff between computation overhead and DPD performance. We demonstrate the performance of our NN method using two different power amplifier systems and investigate the complexity tradeoffs.
通过PA的神经网络模型反向传播的神经网络DPD
我们使用一种新颖的神经网络(NN)方法演示了数字预失真(DPD),以对抗功率放大器(PAs)中的非线性,这些非线性限制了移动设备的功率效率,增加了误差矢量幅度,并导致频谱遏制不足。DPD通常使用基于多项式的方法来完成,该方法使用间接学习架构(ILA),这可能是计算密集型的,特别是对于移动设备,并且对噪声过于敏感。我们使用神经网络的方法避免了与ila相关的问题,首先训练一个神经网络来对PA建模,然后通过反向传播通过PA神经网络模型训练一个预失真器。神经网络DPD有效地学习了独特的PA失真,这可能不容易拟合基于多项式的模型,因此可以在计算开销和DPD性能之间提供良好的权衡。我们用两种不同的功率放大器系统演示了我们的神经网络方法的性能,并研究了复杂性的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信