Level structure, arithmetic representations, and noncommutative Siegel linearization

IF 1.2 1区 数学 Q1 MATHEMATICS
Borys Kadets, Daniel Litt
{"title":"Level structure, arithmetic representations, and noncommutative Siegel linearization","authors":"Borys Kadets, Daniel Litt","doi":"10.1515/crelle-2022-0028","DOIUrl":null,"url":null,"abstract":"Abstract Let ℓ{\\ell} be a prime, k a finitely generated field of characteristic different from ℓ{\\ell}, and X a smooth geometrically connected curve over k. Say a semisimple representation of π1ét⁢(Xk¯){\\pi_{1}^{{\\text{\\'{e}t}}}(X_{\\bar{k}})} is arithmetic if it extends to a finite index subgroup of π1ét⁢(X){\\pi_{1}^{{\\text{\\'{e}t}}}(X)}. We show that there exists an effective constant N=N⁢(X,ℓ){N=N(X,\\ell)} such that any semisimple arithmetic representation of π1ét⁢(Xk¯){\\pi_{1}^{{\\text{\\'{e}t}}}(X_{\\bar{k}})} into GLn⁡(ℤℓ¯){\\operatorname{GL}_{n}(\\overline{\\mathbb{Z}_{\\ell}})}, which is trivial mod ℓN{\\ell^{N}}, is in fact trivial. This extends a previous result of the second author from characteristic zero to all characteristics. The proof relies on a new noncommutative version of Siegel’s linearization theorem and the ℓ{\\ell}-adic form of Baker’s theorem on linear forms in logarithms.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"143 1","pages":"219 - 238"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0028","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let ℓ{\ell} be a prime, k a finitely generated field of characteristic different from ℓ{\ell}, and X a smooth geometrically connected curve over k. Say a semisimple representation of π1ét⁢(Xk¯){\pi_{1}^{{\text{\'{e}t}}}(X_{\bar{k}})} is arithmetic if it extends to a finite index subgroup of π1ét⁢(X){\pi_{1}^{{\text{\'{e}t}}}(X)}. We show that there exists an effective constant N=N⁢(X,ℓ){N=N(X,\ell)} such that any semisimple arithmetic representation of π1ét⁢(Xk¯){\pi_{1}^{{\text{\'{e}t}}}(X_{\bar{k}})} into GLn⁡(ℤℓ¯){\operatorname{GL}_{n}(\overline{\mathbb{Z}_{\ell}})}, which is trivial mod ℓN{\ell^{N}}, is in fact trivial. This extends a previous result of the second author from characteristic zero to all characteristics. The proof relies on a new noncommutative version of Siegel’s linearization theorem and the ℓ{\ell}-adic form of Baker’s theorem on linear forms in logarithms.
水平结构,算术表示,和非交换西格尔线性化
设r = {\ell}为素数,k为特征不同于r = {\ell}的有限生成域,X为k上的光滑几何连接曲线。假设π 1t≠(Xk¯){\pi _1{^ }{{\text{ét}}} (X_ {\bar{k}})的半简单表示}如果推广到π 1t≠(X){\pi _1{^ }{{\text{ét}}} (X)的有限指标子群是算术的}。我们证明了存在一个有效常数N=N≠(X, r){N=N(X),\ell)}使得π 1t≠(Xk¯){\pi _1{^ }{{\text{ét}}} (X_ {\bar{k}})}到GLn (N¯){\operatorname{GL} _n{(}\overline{\mathbb{Z}_{\ell}})}的任何半简单算术表示,它是平凡的模取∑N{\ell ^{N}},实际上是平凡的。这将第二作者之前的结果从特征0扩展到所有特征。该证明依赖于西格尔线性化定理的一个新的非交换版本和对数线性形式的贝克定理的1 {\ell} -adic形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信