1-Wasserstein distance on the standard simplex

Andrew Frohmader, H. Volkmer
{"title":"1-Wasserstein distance on the standard simplex","authors":"Andrew Frohmader, H. Volkmer","doi":"10.2140/ASTAT.2021.12.43","DOIUrl":null,"url":null,"abstract":"Wasserstein distances provide a metric on a space of probability measures. We consider the space $\\Omega$ of all probability measures on the finite set $\\chi = \\{1, \\dots ,n\\}$ where $n$ is a positive integer. 1-Wasserstein distance, $W_1(\\mu,\\nu)$ is a function from $\\Omega \\times \\Omega$ to $[0,\\infty)$. This paper derives closed form expressions for the First and Second moment of $W_1$ on $\\Omega \\times \\Omega$ assuming a uniform distribution on $\\Omega \\times \\Omega$.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/ASTAT.2021.12.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Wasserstein distances provide a metric on a space of probability measures. We consider the space $\Omega$ of all probability measures on the finite set $\chi = \{1, \dots ,n\}$ where $n$ is a positive integer. 1-Wasserstein distance, $W_1(\mu,\nu)$ is a function from $\Omega \times \Omega$ to $[0,\infty)$. This paper derives closed form expressions for the First and Second moment of $W_1$ on $\Omega \times \Omega$ assuming a uniform distribution on $\Omega \times \Omega$.
标准单纯形上的1-Wasserstein距离
沃瑟斯坦距离提供了一个概率度量空间的度量。我们考虑有限集合$\chi = \{1, \dots ,n\}$上所有概率测度的空间$\Omega$,其中$n$是一个正整数。1-Wasserstein距离,$W_1(\mu,\nu)$是从$\Omega \times \Omega$到$[0,\infty)$的函数。本文导出了$\Omega \times \Omega$上$W_1$的一阶矩和二阶矩在$\Omega \times \Omega$上均匀分布的封闭表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信