A class of functionals possessing multiple global minima

B. Ricceri
{"title":"A class of functionals possessing multiple global minima","authors":"B. Ricceri","doi":"10.24193/SUBBMATH.2021.1.06","DOIUrl":null,"url":null,"abstract":"We get a new multiplicity result for gradient systems. Here is a very particular corollary: Let $\\Omega\\subset {\\bf R}^n$ ($n\\geq 2$) be a smooth bounded domain and let $\\Phi:{\\bf R}^2\\to {\\bf R}$ be a $C^1$ function, with $\\Phi(0,0)=0$, such that $$\\sup_{(u,v)\\in {\\bf R}^2}{{|\\Phi_u(u,v)|+|\\Phi_v(u,v)|}\\over {1+|u|^p+|v|^p}} 0$, with $p 2$. Then, for every convex set $S\\subseteq L^{\\infty}(\\Omega)\\times L^{\\infty}(\\Omega)$ dense in $L^2(\\Omega)\\times L^2(\\Omega)$, there exists $(\\alpha,\\beta)\\in S$ such that the problem \n$$\\cases {-\\Delta u=(\\alpha(x)\\cos(\\Phi(u,v))-\\beta(x)\\sin(\\Phi(u,v)))\\Phi_u(u,v) & in $\\Omega$ \\cr & \\cr -\\Delta v= (\\alpha(x)\\cos(\\Phi(u,v))-\\beta(x)\\sin(\\Phi(u,v)))\\Phi_v(u,v) & in $\\Omega$ \\cr & \\cr u=v=0 & on $\\partial\\Omega$\\cr}$$ has at least three weak solutions, two of which are global minima in $H^1_0(\\Omega)\\times H^1_0(\\Omega)$ of the functional $$(u,v)\\to {{1}\\over {2}}\\left ( \\int_{\\Omega}|\\nabla u(x)|^2dx+\\int_{\\Omega}|\\nabla v(x)|^2dx\\right )$$ $$-\\int_{\\Omega}(\\alpha(x)\\sin(\\Phi(u(x),v(x)))+\\beta(x)\\cos(\\Phi(u(x),v(x))))dx\\ .$$","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/SUBBMATH.2021.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We get a new multiplicity result for gradient systems. Here is a very particular corollary: Let $\Omega\subset {\bf R}^n$ ($n\geq 2$) be a smooth bounded domain and let $\Phi:{\bf R}^2\to {\bf R}$ be a $C^1$ function, with $\Phi(0,0)=0$, such that $$\sup_{(u,v)\in {\bf R}^2}{{|\Phi_u(u,v)|+|\Phi_v(u,v)|}\over {1+|u|^p+|v|^p}} 0$, with $p 2$. Then, for every convex set $S\subseteq L^{\infty}(\Omega)\times L^{\infty}(\Omega)$ dense in $L^2(\Omega)\times L^2(\Omega)$, there exists $(\alpha,\beta)\in S$ such that the problem $$\cases {-\Delta u=(\alpha(x)\cos(\Phi(u,v))-\beta(x)\sin(\Phi(u,v)))\Phi_u(u,v) & in $\Omega$ \cr & \cr -\Delta v= (\alpha(x)\cos(\Phi(u,v))-\beta(x)\sin(\Phi(u,v)))\Phi_v(u,v) & in $\Omega$ \cr & \cr u=v=0 & on $\partial\Omega$\cr}$$ has at least three weak solutions, two of which are global minima in $H^1_0(\Omega)\times H^1_0(\Omega)$ of the functional $$(u,v)\to {{1}\over {2}}\left ( \int_{\Omega}|\nabla u(x)|^2dx+\int_{\Omega}|\nabla v(x)|^2dx\right )$$ $$-\int_{\Omega}(\alpha(x)\sin(\Phi(u(x),v(x)))+\beta(x)\cos(\Phi(u(x),v(x))))dx\ .$$
一类具有多个全局极小值的泛函
得到了梯度系统的一个新的多重性结果。这是一个非常特殊的推论:让美元\ω\子集{\ R bf} ^ n (n \组2美元)美元是一个光滑的有限域,让美元\φ:{\ R bf} ^ 2 \ {\ R bf} $ C ^ 1美元是一个函数,美元\φ(0,0)= 0美元,这样$ $ \ sup_ {(u, v) \ {\ R bf} ^ 2} {{| \ Phi_u (u, v) | + | \ Phi_v (u, v) |} \ / {1 u + | | ^ v p + | | ^ p}} 0美元,美元p 2美元。然后,对于每一个凸集$ S \ subseteq L ^ {\ infty}(\ω)\ * L ^ {\ infty}(\ω)密集在L ^ 2美元(\ω)\ * L ^ 2(\ω),美元存在美元(\α,β\)\新元这样问题$ $ \病例{- \δu = (alpha (x) \ \ cosφ(\ (u, v)) -β(x) \ \罪(\φ(u, v))) \ Phi_u (u, v) &ω\ \ cr & \美元cr - \δv = (alpha (x) \ \ cosφ(u, v)(\) -β(x) \ \罪(\φ(u, v))) \ Phi_v (u, v) &ω\ \ cr & \美元cr u = v = 0 &在ω\部分\ \ cr美元}$ $至少有三个弱的解决方案,其中两个是全局最小值在H ^ 1 _0美元(\ω)\ * H ^ 1 _0(\ω)功能的$ $美元(u, v) \{{1}在{2}}\ \离开(\ int_{\ω}| \微分算符u (x) | ^ 2 dx + \ int_{\ω}| \微分算符v (x) | ^ 2 dx \右)$ $ $ $ - \ int_{\ω}(alpha (x) \ \罪(\φ(u (x), v (x))) + \β(x) \ cosφ(\ (u (x), v (x)))) dx \ $ $
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信