{"title":"A class of functionals possessing multiple global minima","authors":"B. Ricceri","doi":"10.24193/SUBBMATH.2021.1.06","DOIUrl":null,"url":null,"abstract":"We get a new multiplicity result for gradient systems. Here is a very particular corollary: Let $\\Omega\\subset {\\bf R}^n$ ($n\\geq 2$) be a smooth bounded domain and let $\\Phi:{\\bf R}^2\\to {\\bf R}$ be a $C^1$ function, with $\\Phi(0,0)=0$, such that $$\\sup_{(u,v)\\in {\\bf R}^2}{{|\\Phi_u(u,v)|+|\\Phi_v(u,v)|}\\over {1+|u|^p+|v|^p}} 0$, with $p 2$. Then, for every convex set $S\\subseteq L^{\\infty}(\\Omega)\\times L^{\\infty}(\\Omega)$ dense in $L^2(\\Omega)\\times L^2(\\Omega)$, there exists $(\\alpha,\\beta)\\in S$ such that the problem \n$$\\cases {-\\Delta u=(\\alpha(x)\\cos(\\Phi(u,v))-\\beta(x)\\sin(\\Phi(u,v)))\\Phi_u(u,v) & in $\\Omega$ \\cr & \\cr -\\Delta v= (\\alpha(x)\\cos(\\Phi(u,v))-\\beta(x)\\sin(\\Phi(u,v)))\\Phi_v(u,v) & in $\\Omega$ \\cr & \\cr u=v=0 & on $\\partial\\Omega$\\cr}$$ has at least three weak solutions, two of which are global minima in $H^1_0(\\Omega)\\times H^1_0(\\Omega)$ of the functional $$(u,v)\\to {{1}\\over {2}}\\left ( \\int_{\\Omega}|\\nabla u(x)|^2dx+\\int_{\\Omega}|\\nabla v(x)|^2dx\\right )$$ $$-\\int_{\\Omega}(\\alpha(x)\\sin(\\Phi(u(x),v(x)))+\\beta(x)\\cos(\\Phi(u(x),v(x))))dx\\ .$$","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/SUBBMATH.2021.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We get a new multiplicity result for gradient systems. Here is a very particular corollary: Let $\Omega\subset {\bf R}^n$ ($n\geq 2$) be a smooth bounded domain and let $\Phi:{\bf R}^2\to {\bf R}$ be a $C^1$ function, with $\Phi(0,0)=0$, such that $$\sup_{(u,v)\in {\bf R}^2}{{|\Phi_u(u,v)|+|\Phi_v(u,v)|}\over {1+|u|^p+|v|^p}} 0$, with $p 2$. Then, for every convex set $S\subseteq L^{\infty}(\Omega)\times L^{\infty}(\Omega)$ dense in $L^2(\Omega)\times L^2(\Omega)$, there exists $(\alpha,\beta)\in S$ such that the problem
$$\cases {-\Delta u=(\alpha(x)\cos(\Phi(u,v))-\beta(x)\sin(\Phi(u,v)))\Phi_u(u,v) & in $\Omega$ \cr & \cr -\Delta v= (\alpha(x)\cos(\Phi(u,v))-\beta(x)\sin(\Phi(u,v)))\Phi_v(u,v) & in $\Omega$ \cr & \cr u=v=0 & on $\partial\Omega$\cr}$$ has at least three weak solutions, two of which are global minima in $H^1_0(\Omega)\times H^1_0(\Omega)$ of the functional $$(u,v)\to {{1}\over {2}}\left ( \int_{\Omega}|\nabla u(x)|^2dx+\int_{\Omega}|\nabla v(x)|^2dx\right )$$ $$-\int_{\Omega}(\alpha(x)\sin(\Phi(u(x),v(x)))+\beta(x)\cos(\Phi(u(x),v(x))))dx\ .$$