Hybrid FiST_CNN approach for feature extraction for vision-based indian sign language recognition

Akansha Tyagi, Sandhya Bansal
{"title":"Hybrid FiST_CNN approach for feature extraction for vision-based indian sign language recognition","authors":"Akansha Tyagi, Sandhya Bansal","doi":"10.34028/iajit/19/3/15","DOIUrl":null,"url":null,"abstract":"Indian sign language (ISL) is the commonly used language by the deaf-mute community in the Indian continent. Effective feature extraction is essential for the automatic recognition of gestures. This paper aims at developing an efficient feature extraction technique using FAST, SIFT, and CNN. Features from Fast Accelerated Segment Test(FAST) with Scale-invariant Feature Transformation(SIFT) are used to detect and compute features, respectively. CNN is used for classification with the hybridization of FAST-SIFT features. The system is implemented and tested using the python-based library Keras. The results of the proposed techniques have been tested on 34 gestures of ISL (24 alphabet sets and 10 digit sets) and then compared with the CNN and SIFT_CNN, and it is also tested on two publicly available datasets on Jochen Trisech Dataset(JTD) and NUS-II dataset. The proposed study outperformed some existing ISLR works with an accuracy of 97.89%, 95.68%, 94.90% and 95.87% for ISL-alphabets, MNIST, JTD and NUS-II, respectively.","PeriodicalId":13624,"journal":{"name":"Int. Arab J. Inf. Technol.","volume":"65 1","pages":"403-411"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. Arab J. Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/19/3/15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Indian sign language (ISL) is the commonly used language by the deaf-mute community in the Indian continent. Effective feature extraction is essential for the automatic recognition of gestures. This paper aims at developing an efficient feature extraction technique using FAST, SIFT, and CNN. Features from Fast Accelerated Segment Test(FAST) with Scale-invariant Feature Transformation(SIFT) are used to detect and compute features, respectively. CNN is used for classification with the hybridization of FAST-SIFT features. The system is implemented and tested using the python-based library Keras. The results of the proposed techniques have been tested on 34 gestures of ISL (24 alphabet sets and 10 digit sets) and then compared with the CNN and SIFT_CNN, and it is also tested on two publicly available datasets on Jochen Trisech Dataset(JTD) and NUS-II dataset. The proposed study outperformed some existing ISLR works with an accuracy of 97.89%, 95.68%, 94.90% and 95.87% for ISL-alphabets, MNIST, JTD and NUS-II, respectively.
基于视觉的印度手语识别特征提取的混合first_cnn方法
印度手语(ISL)是印度大陆聋哑人社区常用的语言。有效的特征提取是手势自动识别的关键。本文旨在开发一种基于FAST、SIFT和CNN的高效特征提取技术。利用快速加速片段测试(Fast)和尺度不变特征变换(SIFT)的特征分别进行特征检测和特征计算。采用CNN对FAST-SIFT特征进行杂交分类。该系统使用基于python的库Keras实现和测试。本文在34种ISL手势(24个字母集和10个数字集)上进行了测试,并与CNN和SIFT_CNN进行了比较,并在Jochen Trisech数据集(JTD)和NUS-II数据集上进行了测试。本研究对isl -字母表、MNIST、JTD和NUS-II的准确率分别为97.89%、95.68%、94.90%和95.87%,优于现有的一些ISLR工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信