Shi Sha, Ajinkya S. Bankar, Xiaokun Yang, Wujie Wen, Gang Quan
{"title":"On Fundamental Principles for Thermal-Aware Design on Periodic Real-Time Multi-Core Systems","authors":"Shi Sha, Ajinkya S. Bankar, Xiaokun Yang, Wujie Wen, Gang Quan","doi":"10.1145/3378063","DOIUrl":null,"url":null,"abstract":"With the exponential rise of the transistor count in one chip, the thermal problem has become a pressing issue in computing system design. While there have been extensive methods and techniques published for design optimization with thermal awareness, there is a need for more rigorous and formal thermal analysis in designing real-time systems and applications that demand a strong exception guarantee. In this article, we analytically prove a series of fundamental properties and principles concerning the RC thermal model, peak temperature identification, and peak temperature reduction for periodic real-time systems, which are general enough to be applied on 2D and 3D multi-core platforms. These findings enhance the worst-case temperature predictability in runtime scenarios, as well as help to develop more effective thermal management policy, which is key to thermal-constrained periodic real-time system design.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"275 1","pages":"1 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
With the exponential rise of the transistor count in one chip, the thermal problem has become a pressing issue in computing system design. While there have been extensive methods and techniques published for design optimization with thermal awareness, there is a need for more rigorous and formal thermal analysis in designing real-time systems and applications that demand a strong exception guarantee. In this article, we analytically prove a series of fundamental properties and principles concerning the RC thermal model, peak temperature identification, and peak temperature reduction for periodic real-time systems, which are general enough to be applied on 2D and 3D multi-core platforms. These findings enhance the worst-case temperature predictability in runtime scenarios, as well as help to develop more effective thermal management policy, which is key to thermal-constrained periodic real-time system design.