{"title":"Multiple solution for a fourth-order nonlinear eigenvalue problem with singular and sublinear potential","authors":"Csaba Farkas, I. Mezei, Zsuzsanna-Timea Nagy","doi":"10.24193/subbmath.2023.1.10","DOIUrl":null,"url":null,"abstract":"\"Let $(M,g)$ be a Cartan-Hadamard manifold. For certain positive numbers $\\mu$ and $\\lambda$, we establish the multiplicity of solutions to the problem $$\\Delta_g^2 u-\\Delta_g u+u=\\mu \\frac{u}{d_g(x_0,x)^4}+\\lambda \\alpha(x)f(u),\\ \\mbox{ in } M,$$ where $x_0\\in M$, while $f:\\R\\to\\R$ is continuous function, superlinear at zero and sublinear at infinity.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"177 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
"Let $(M,g)$ be a Cartan-Hadamard manifold. For certain positive numbers $\mu$ and $\lambda$, we establish the multiplicity of solutions to the problem $$\Delta_g^2 u-\Delta_g u+u=\mu \frac{u}{d_g(x_0,x)^4}+\lambda \alpha(x)f(u),\ \mbox{ in } M,$$ where $x_0\in M$, while $f:\R\to\R$ is continuous function, superlinear at zero and sublinear at infinity."