{"title":"Primary microstructure characterization of Co-20Ni-9Al-7W-3Re-2ti superalloy","authors":"A. Tomaszewska","doi":"10.2298/jmmb210309044t","DOIUrl":null,"url":null,"abstract":"The characterization of the primary microstructure of the new Co-based superalloy of Co-20Ni-9Al-7W-3Re-2Ti type was shown in this article. The investigated alloy was manufactured by induction melting process from pure feedstock materials. The fundamental technological problem related to Co-Al-W-X multicomponent alloys' casting process is a strong susceptibility to interdendritic segregation of alloying elements, especially tungsten and rhenium. The performed analysis revealed that the observed effect of alloying elements segregation is detectable and much stronger than for Co-9Al-9W and Co-20Ni-7Al-7W alloys, related to titanium, nickel and aluminium migration to inter-dendritic spaces. Consequently, the tungsten concentration gradient between dendritic and interdendritic zones is higher than for Co-9Al-9W and Co-20Ni-7Al-7W alloys. The same situation is in the case of rhenium and cobalt, but Co's concentration in the interdendritic zone is only slightly lower.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"17 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb210309044t","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The characterization of the primary microstructure of the new Co-based superalloy of Co-20Ni-9Al-7W-3Re-2Ti type was shown in this article. The investigated alloy was manufactured by induction melting process from pure feedstock materials. The fundamental technological problem related to Co-Al-W-X multicomponent alloys' casting process is a strong susceptibility to interdendritic segregation of alloying elements, especially tungsten and rhenium. The performed analysis revealed that the observed effect of alloying elements segregation is detectable and much stronger than for Co-9Al-9W and Co-20Ni-7Al-7W alloys, related to titanium, nickel and aluminium migration to inter-dendritic spaces. Consequently, the tungsten concentration gradient between dendritic and interdendritic zones is higher than for Co-9Al-9W and Co-20Ni-7Al-7W alloys. The same situation is in the case of rhenium and cobalt, but Co's concentration in the interdendritic zone is only slightly lower.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.