Poleward translation of vortices due to deep thermal convection on a rotating planet

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Y. Afanasyev, Y. Huang
{"title":"Poleward translation of vortices due to deep thermal convection on a rotating planet","authors":"Y. Afanasyev, Y. Huang","doi":"10.1080/03091929.2019.1694676","DOIUrl":null,"url":null,"abstract":"Atmospheres of gas-giant planets are driven by thermal convection and often exhibit cyclonic circulation at the poles. Here we present the results of the numerical simulations of individual cold and warm blobs in a polar area of a rotating deep spherical layer. The simulations show that the cyclones created at the top of the atmosphere by sinking cold blobs translate northward. The cyclones are the surface signatures of the Taylor columns formed above the descending cold blobs. The Taylor columns are aligned with the planetary axis of rotation and are created by inertial (gyroscopic) waves emitted by the blobs. In contrast, the cyclones created at the bottom of the shell by rising warm blobs move southwards. The numerical results exclude beta-drift from possible reasons of the observed translation.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"120 1","pages":"821 - 834"},"PeriodicalIF":1.1000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2019.1694676","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4

Abstract

Atmospheres of gas-giant planets are driven by thermal convection and often exhibit cyclonic circulation at the poles. Here we present the results of the numerical simulations of individual cold and warm blobs in a polar area of a rotating deep spherical layer. The simulations show that the cyclones created at the top of the atmosphere by sinking cold blobs translate northward. The cyclones are the surface signatures of the Taylor columns formed above the descending cold blobs. The Taylor columns are aligned with the planetary axis of rotation and are created by inertial (gyroscopic) waves emitted by the blobs. In contrast, the cyclones created at the bottom of the shell by rising warm blobs move southwards. The numerical results exclude beta-drift from possible reasons of the observed translation.
旋转行星上深层热对流引起的涡旋向极地的平移
气态巨行星的大气是由热对流驱动的,在两极经常表现出气旋环流。在这里,我们给出了在旋转深球层的极区单个冷和暖团的数值模拟结果。模拟表明,在大气层顶部由下沉的冷团形成的气旋向北移动。气旋是在下降的冷团上方形成的泰勒柱的地表特征。泰勒柱与行星旋转轴对齐,并由斑点发出的惯性(陀螺仪)波产生。相反,在壳的底部由上升的暖团形成的气旋向南移动。数值结果排除了观测到的平移的可能原因-漂移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信