{"title":"Poleward translation of vortices due to deep thermal convection on a rotating planet","authors":"Y. Afanasyev, Y. Huang","doi":"10.1080/03091929.2019.1694676","DOIUrl":null,"url":null,"abstract":"Atmospheres of gas-giant planets are driven by thermal convection and often exhibit cyclonic circulation at the poles. Here we present the results of the numerical simulations of individual cold and warm blobs in a polar area of a rotating deep spherical layer. The simulations show that the cyclones created at the top of the atmosphere by sinking cold blobs translate northward. The cyclones are the surface signatures of the Taylor columns formed above the descending cold blobs. The Taylor columns are aligned with the planetary axis of rotation and are created by inertial (gyroscopic) waves emitted by the blobs. In contrast, the cyclones created at the bottom of the shell by rising warm blobs move southwards. The numerical results exclude beta-drift from possible reasons of the observed translation.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"120 1","pages":"821 - 834"},"PeriodicalIF":1.1000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2019.1694676","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
Atmospheres of gas-giant planets are driven by thermal convection and often exhibit cyclonic circulation at the poles. Here we present the results of the numerical simulations of individual cold and warm blobs in a polar area of a rotating deep spherical layer. The simulations show that the cyclones created at the top of the atmosphere by sinking cold blobs translate northward. The cyclones are the surface signatures of the Taylor columns formed above the descending cold blobs. The Taylor columns are aligned with the planetary axis of rotation and are created by inertial (gyroscopic) waves emitted by the blobs. In contrast, the cyclones created at the bottom of the shell by rising warm blobs move southwards. The numerical results exclude beta-drift from possible reasons of the observed translation.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.