Developing a satellite-based frost risk model for the Southern African commercial forestry landscape

R. Ismail, J. Crous, Giovanni Sale, Andrew Morris, K. Peerbhay
{"title":"Developing a satellite-based frost risk model for the Southern African commercial forestry landscape","authors":"R. Ismail, J. Crous, Giovanni Sale, Andrew Morris, K. Peerbhay","doi":"10.2989/20702620.2020.1759304","DOIUrl":null,"url":null,"abstract":"Frost is a sporadic meteorological event affecting the productivity of commercial forests in South Africa. Severe frost occurrences may cause irreversible damage to forest stands, slowing down tree growth or leading to tree mortality. Using the Moderate Imaging Spectrometer (spatial resolution: 1 km by 1 km, swath: 1 200 km by 1 200 km) night-time land surface temperatures between 2002 and 2011, this study mapped frost risk classes using six satellite-derived variables at the landscape level. These variables included calculated thresholds of minimum temperature, probability of frost occurrence, mean temperature, total number of frost days, frost duration and the frost severity index. Results show that, using an unsupervised random forest approach with partitioning around medoids, clustering was successful in mapping frost risk using eight optimal clusters. The methodology developed in this study contributes to building a robust frost-risk model to manage and mitigate forest frost damage.","PeriodicalId":21939,"journal":{"name":"Southern Forests: a Journal of Forest Science","volume":"120 1","pages":"10 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Southern Forests: a Journal of Forest Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2989/20702620.2020.1759304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Frost is a sporadic meteorological event affecting the productivity of commercial forests in South Africa. Severe frost occurrences may cause irreversible damage to forest stands, slowing down tree growth or leading to tree mortality. Using the Moderate Imaging Spectrometer (spatial resolution: 1 km by 1 km, swath: 1 200 km by 1 200 km) night-time land surface temperatures between 2002 and 2011, this study mapped frost risk classes using six satellite-derived variables at the landscape level. These variables included calculated thresholds of minimum temperature, probability of frost occurrence, mean temperature, total number of frost days, frost duration and the frost severity index. Results show that, using an unsupervised random forest approach with partitioning around medoids, clustering was successful in mapping frost risk using eight optimal clusters. The methodology developed in this study contributes to building a robust frost-risk model to manage and mitigate forest frost damage.
为南部非洲商业林业景观开发基于卫星的霜冻风险模型
霜冻是影响南非商业森林生产力的零星气象事件。严重的霜冻可能对林分造成不可逆转的损害,减缓树木生长或导致树木死亡。本研究利用中度成像光谱仪(空间分辨率:1公里乘1公里,带状:1200公里乘1200公里)在2002 - 2011年间的夜间地表温度,在景观水平上利用6个卫星衍生变量绘制了霜冻风险等级图。这些变量包括计算的最低温度阈值、霜冻发生概率阈值、平均温度阈值、霜冻日数阈值、霜冻持续时间阈值和霜冻严重指数阈值。结果表明,采用无监督随机森林方法,采用8个最优聚类,可以成功地映射霜冻风险。本研究中开发的方法有助于建立一个强大的霜风险模型,以管理和减轻森林霜冻损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信