Global Self-Labeled Distribution Analysis for Hyperspectral Band Selection

Xin-Yi Tong, Jihao Yin, Limin Wu, Hui Qv
{"title":"Global Self-Labeled Distribution Analysis for Hyperspectral Band Selection","authors":"Xin-Yi Tong, Jihao Yin, Limin Wu, Hui Qv","doi":"10.1109/IGARSS.2019.8899035","DOIUrl":null,"url":null,"abstract":"A global self-labeled distribution analysis (GSLDA) for hyperspectral image (HSI) band selection is proposed in this paper, which focuses on an unsupervised method to ascertain the band discrimination. In order to generate the band labels for further analysis, the concept of the local minimum spanning forest (LMSF) is introduced into the construction of the global self-labeled band partitions based on graph theory. Meanwhile, the novel scoring strategy of triple-density indexes is applied to analyze the labeled-band distribution for determining the selected band subset with clear discrimination. The feasibility of the proposed method is evaluated on real hyperspectral data and the experiment results show a competitive good performance, which demonstrates that the selected bands hold apparent global discrimination and robust noise immunity.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"8 1","pages":"3792-3795"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A global self-labeled distribution analysis (GSLDA) for hyperspectral image (HSI) band selection is proposed in this paper, which focuses on an unsupervised method to ascertain the band discrimination. In order to generate the band labels for further analysis, the concept of the local minimum spanning forest (LMSF) is introduced into the construction of the global self-labeled band partitions based on graph theory. Meanwhile, the novel scoring strategy of triple-density indexes is applied to analyze the labeled-band distribution for determining the selected band subset with clear discrimination. The feasibility of the proposed method is evaluated on real hyperspectral data and the experiment results show a competitive good performance, which demonstrates that the selected bands hold apparent global discrimination and robust noise immunity.
高光谱波段选择的全局自标记分布分析
提出了一种用于高光谱图像波段选择的全局自标记分布分析(GSLDA)方法,重点研究了一种确定波段区分的无监督方法。基于图论,将局部最小生成森林(LMSF)的概念引入到全局自标记带分区的构造中,以生成可进一步分析的带标签。同时,采用新颖的三密度指标评分策略对标记频带分布进行分析,以确定选择的频带子集具有明确的区分性。在实际高光谱数据上对该方法进行了可行性评估,实验结果表明,所选波段具有明显的全局分辨性和较强的抗噪性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信